



2022年欽州市重點中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析
展開
這是一份2022年欽州市重點中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析,共23頁。試卷主要包含了答題時請按要求用筆,下列計算正確的是等內(nèi)容,歡迎下載使用。
?2021-2022中考數(shù)學(xué)模擬試卷
注意事項:
1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。
2.答題時請按要求用筆。
3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。
4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。
5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。
一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)
1.如圖,在平面直角坐標(biāo)系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標(biāo)為( ?。?br />
A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
2.下列各組單項式中,不是同類項的一組是( )
A.和 B.和 C.和 D.和3
3.如圖: 在中,平分,平分,且交于,若,則等于( )
A.75 B.100 C.120 D.125
4.下列圖形中,周長不是32 m的圖形是( )
A. B. C. D.
5.下列運算正確的是( )
A. B. C. D.
6.長城、故宮等是我國第一批成功入選世界遺產(chǎn)的文化古跡,長城總長約6 700 000米,將6 700 000用科學(xué)記數(shù)法表示應(yīng)為( )
A.6.7×106 B.6.7×10﹣6 C.6.7×105 D.0.67×107
7.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法: ①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形. 其中,正確的有( ) 個
A.1 B.2 C.3 D.4
8.如圖,要使□ABCD成為矩形,需添加的條件是()
A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠2
9.下列計算正確的是( ?。?br />
A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
10.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為( )
A.π B.π C.π D.π
11.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是( )
A. B.
C. D.
12.某共享單車前a公里1元,超過a公里的,每公里2元,若要使使用該共享單車50%的人只花1元錢,a應(yīng)該要取什么數(shù)( ?。?br />
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
二、填空題:(本大題共6個小題,每小題4分,共24分.)
13.化簡二次根式的正確結(jié)果是_____.
14.如圖,在平面直角坐標(biāo)系中,點A(0,6),點B在x軸的負(fù)半軸上,將線段AB繞點A逆時針旋轉(zhuǎn)90°至AB',點M是線段AB'的中點,若反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,則k=_____.
15.不等式5﹣2x<1的解集為_____.
16.同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為 .
17.填在下列各圖形中的三個數(shù)之間都有相同的規(guī)律,根據(jù)此規(guī)律,a的值是____.
18.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點D,如果EF=8,AD=2,則⊙O半徑的長是_____.
三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
19.(6分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.
(1)說明四邊形ACEF是平行四邊形;
(2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.
20.(6分)已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如圖1所示,當(dāng)α=60°時,求證:△DCE是等邊三角形;
(2)如圖2所示,當(dāng)α=45°時,求證:=;
(3)如圖3所示,當(dāng)α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.
21.(6分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.
(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說明理由;
(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為 ?。?br />
22.(8分)小方與同學(xué)一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進10米到達點D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.
(1)求AD的長.
(2)求樹長AB.
23.(8分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).
求一次函數(shù)和反比例函數(shù)解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據(jù)圖象,直接寫出不等式的解集.
24.(10分)在第23個世界讀書日前夕,我市某中學(xué)為了解本校學(xué)生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果按,,,分為四個等級,并依次用A,B,C,D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計的數(shù)據(jù),繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:
求本次調(diào)查的學(xué)生人數(shù);
求扇形統(tǒng)計圖中等級B所在扇形的圓心角度數(shù),并把條形統(tǒng)計圖補充完整;
若該校共有學(xué)生1200人,試估計每周課外閱讀時間滿足的人數(shù).
25.(10分)小張同學(xué)嘗試運用課堂上學(xué)到的方法,自主研究函數(shù)y=的圖象與性質(zhì).下面是小張同學(xué)在研究過程中遇到的幾個問題,現(xiàn)由你來完成:
(1)函數(shù)y=自變量的取值范圍是 ;
(2)下表列出了y與x的幾組對應(yīng)值:
x
…
﹣2
﹣
m
﹣
﹣
1
2
…
y
…
1
4
4
1
…
表中m的值是 ;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出以表中各組對應(yīng)值為坐標(biāo)的點,試由描出的點畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)y=的圖象,寫出這個函數(shù)的性質(zhì): ?。ㄖ恍鑼懸粋€)
26.(12分)某小區(qū)為了安全起見,決定將小區(qū)內(nèi)的滑滑板的傾斜角由45°調(diào)為30°,如圖,已知原滑滑板AB的長為4米,點D,B,C在同一水平地面上,調(diào)整后滑滑板會加長多少米?(結(jié)果精確到0.01米,參考數(shù)據(jù):,,)
27.(12分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則
(1)a=_____,b=_____;
(2)求代數(shù)式a2b+ab的值.
參考答案
一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)
1、A
【解析】
延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標(biāo).
【詳解】
如圖,點P的坐標(biāo)為(-4,-3).
故選A.
【點睛】
本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.
2、A
【解析】
如果兩個單項式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱這兩個單項式為同類項.
【詳解】
根據(jù)題意可知:x2y和2xy2不是同類項.
故答案選:A.
【點睛】
本題考查了單項式與多項式,解題的關(guān)鍵是熟練的掌握單項式與多項式的相關(guān)知識點.
3、B
【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.
【詳解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.
【點睛】
本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.
4、B
【解析】
根據(jù)所給圖形,分別計算出它們的周長,然后判斷各選項即可.
【詳解】
A. L=(6+10)×2=32,其周長為32.
B. 該平行四邊形的一邊長為10,另一邊長大于6,故其周長大于32.
C. L=(6+10)×2=32,其周長為32.
D. L=(6+10)×2=32,其周長為32.
采用排除法即可選出B
故選B.
【點睛】
此題考查多邊形的周長,解題在于掌握計算公式.
5、D
【解析】
根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘.合并同類項即可解答.
【詳解】
解:A、B兩項不是同類項,所以不能合并,故A、B錯誤,
C、D考查冪的乘方運算,底數(shù)不變,指數(shù)相乘. ,故D正確;
【點睛】
本題考查冪的乘方和合并同類項,熟練掌握運算法則是解題的關(guān)鍵.
6、A
【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).
【詳解】
解:6 700 000=6.7×106,
故選:A
【點睛】
此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.
7、D
【解析】
先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當(dāng)∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數(shù).
【詳解】
解:∵DE∥CA,DF∥BA,
∴四邊形AEDF是平行四邊形,選項①正確;
若∠BAC=90°,
∴平行四邊形AEDF為矩形,選項②正確;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四邊形AEDF為菱形,選項③正確;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四邊形AEDF為菱形,選項④正確,
則其中正確的個數(shù)有4個.
故選D.
【點睛】
此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.
8、B
【解析】
根據(jù)一個角是90度的平行四邊形是矩形進行選擇即可.
【詳解】
解:A、是鄰邊相等,可判定平行四邊形ABCD是菱形;
B、是一內(nèi)角等于90°,可判斷平行四邊形ABCD成為矩形;
C、是對角線互相垂直,可判定平行四邊形ABCD是菱形;
D、是對角線平分對角,可判斷平行四邊形ABCD成為菱形;
故選:B.
【點睛】
本題主要應(yīng)用的知識點為:矩形的判定. ①對角線相等且相互平分的四邊形為矩形.②一個角是90度的平行四邊形是矩形.
9、D
【解析】
A、原式=a2﹣4,不符合題意;
B、原式=a2﹣a﹣2,不符合題意;
C、原式=a2+b2+2ab,不符合題意;
D、原式=a2﹣2ab+b2,符合題意,
故選D
10、A
【解析】
利用切線的性質(zhì)得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.
【詳解】
解:∵PA切⊙O于點A,
∴OA⊥PA,
∴∠OAP=90°,
∵∠C=∠O,∠P=∠C,
∴∠O=2∠P,
而∠O+∠P=90°,
∴∠O=60°,
∴劣弧AB的長=.
故選:A.
【點睛】
本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.
11、D
【解析】
找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在視圖中.
【詳解】
解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;
左視圖有二列,從左往右分別有2,1個正方形;
俯視圖有三列,從上往下分別有3,1個正方形,
故選A.
【點睛】
本題考查了三視圖的知識,關(guān)鍵是掌握三視圖所看的位置.掌握定義是關(guān)鍵.
此題主要考查了簡單組合體的三視圖,準(zhǔn)確把握觀察角度是解題關(guān)鍵.
12、B
【解析】解:根據(jù)中位數(shù)的意義,故只要知道中位數(shù)就可以了.故選B.
二、填空題:(本大題共6個小題,每小題4分,共24分.)
13、﹣a
【解析】
, .
.
14、12
【解析】
根據(jù)題意可以求得點B'的橫坐標(biāo),然后根據(jù)反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,從而可以求得k的值.
【詳解】
解:作B′C⊥y軸于點C,如圖所示,
∵∠BAB′=90°,∠AOB=90°,AB=AB′,
∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,
∴∠ABO=∠BA′C,
∴△ABO≌△BA′C,
∴AO=B′C,
∵點A(0,6),
∴B′C=6,
設(shè)點B′的坐標(biāo)為(6,),
∵點M是線段AB'的中點,點A(0,6),
∴點M的坐標(biāo)為(3,),
∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點M,
∴=,
解得,k=12,
故答案為:12.
【點睛】
本題考查反比例函數(shù)圖象上點的坐標(biāo)特征、旋轉(zhuǎn)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.
15、x>1.
【解析】
根據(jù)不等式的解法解答.
【詳解】
解:,
.
故答案為
【點睛】
此題重點考查學(xué)生對不等式解的理解,掌握不等式的解法是解題的關(guān)鍵.
16、
【解析】
試題分析:首先列表,然后根據(jù)表格求得所有等可能的結(jié)果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.
解:列表得:
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36種等可能的結(jié)果,
兩個骰子的點數(shù)相同的有6種情況,
∴兩個骰子的點數(shù)相同的概率為:=.
故答案為.
考點:列表法與樹狀圖法.
17、1.
【解析】
尋找規(guī)律:
上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;
右下是:從第二個圖形開始,左下數(shù)字減上面數(shù)字差的平方:
(4-2)2,(9-3)2,(16-4)2,…
∴a=(36-6)2=1.
18、1.
【解析】
試題解析:連接OE,如下圖所示,
則:OE=OA=R,
∵AB是⊙O的直徑,弦EF⊥AB,
∴ED=DF=4,
∵OD=OA-AD,
∴OD=R-2,
在Rt△ODE中,由勾股定理可得:
OE2=OD2+ED2,
∴R2=(R-2)2+42,
∴R=1.
考點:1.垂徑定理;2.解直角三角形.
三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
19、(1)說明見解析;(2)當(dāng)∠B=30°時,四邊形ACEF是菱形.理由見解析.
【解析】
試題分析:(1)證明△AEC≌△EAF,即可得到EF=CA,根據(jù)兩組對邊分別相等的四邊形是平行四邊形即可判斷;
(2)當(dāng)∠B=30°時,四邊形ACEF是菱形.根據(jù)直角三角形的性質(zhì),即可證得AC=EC,根據(jù)菱形的定義即可判斷.
(1)證明:由題意知∠FDC=∠DCA=90°,
∴EF∥CA,
∴∠FEA=∠CAE,
∵AF=CE=AE,
∴∠F=∠FEA=∠CAE=∠ECA.
在△AEC和△EAF中,
∵
∴△EAF≌△AEC(AAS),
∴EF=CA,
∴四邊形ACEF是平行四邊形.
(2)解:當(dāng)∠B=30°時,四邊形ACEF是菱形.
理由如下:∵∠B=30°,∠ACB=90°,
∴AC=AB,
∵DE垂直平分BC,
∴∠BDE=90°
∴∠BDE=∠ACB
∴ED∥AC
又∵BD=DC
∴DE是△ABC的中位線,
∴E是AB的中點,
∴BE=CE=AE,
又∵AE=CE,
∴AE=CE=AB,
又∵AC=AB,
∴AC=CE,
∴四邊形ACEF是菱形.
考點:菱形的判定;全等三角形的判定與性質(zhì);線段垂直平分線的性質(zhì);平行四邊形的判定.
20、1
【解析】
試題分析:(1)證明△CFD≌△DAE即可解決問題.
(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.
(3)證明EC=ED即可解決問題.
試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等邊三角形.
(2)證明:如圖2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四邊形ADFG是矩形,F(xiàn)C=FG,∴FG=AD,CF=AD,∴=.
(3)解:如圖3中,設(shè)AC與DE交于點O.
∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.
點睛:本題考查了相似三角形綜合題、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題,屬于中考壓軸題.
21、(1)∠AED=∠C,理由見解析;(2)
【解析】
(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;
(2)根據(jù)勾股定理和三角函數(shù)進行解答即可.
【詳解】
(1)∠AED=∠C,證明如下:
連接BD,
可得∠ADB=90°,
∴∠C+∠DBC=90°,
∵CB是⊙O的切線,
∴∠CBA=90°,
∴∠ABD+∠DBC=90°,
∴∠ABD=∠C,
∵∠AEB=∠ABD,
∴∠AED=∠C,
(2)連接BE,
∴∠AEB=90°,
∵∠C=60°,
∴∠CAB=30°,
在Rt△DAB中,AD=3,∠ADB=90°,
∴cos∠DAB=,
解得:AB=2,
∵E是半圓AB的中點,
∴AE=BE,
∵∠AEB=90°,
∴∠BAE=45°,
在Rt△AEB中,AB=2,∠ADB=90°,
∴cos∠EAB=,
解得:AE=.
故答案為
【點睛】
此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.
22、(1);(2).
【解析】
試題分析:(1)過點A作AE⊥CB于點E,設(shè)AE=x,分別表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)過點B作BF⊥AC于點F,設(shè)BF=y,分別表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的長度.
試題解析:(1)如圖,過A作AH⊥CB于H,設(shè)AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如圖,過B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
設(shè)MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
23、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)將點A坐標(biāo)代入解析式,可求解析式;(2)一次函數(shù)和反比例函數(shù)解析式組成方程組,求出點B坐標(biāo),即可求△ABF的面積;(3)直接根據(jù)圖象可得.
【詳解】
(1)∵一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y= (k≠0)圖象交于A(﹣3,2)、B兩點,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函數(shù)解析式y(tǒng)=﹣,反比例函數(shù)解析式y(tǒng)=.
(2)根據(jù)題意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由圖象可得:x<﹣2或0<x<4
【點睛】
本題考查了反比例函數(shù)圖象與一次函數(shù)圖象的交點問題,待定系數(shù)法求解析式,熟練運用函數(shù)圖象解決問題是本題的關(guān)鍵.
24、本次調(diào)查的學(xué)生人數(shù)為200人;B所在扇形的圓心角為,補全條形圖見解析;全校每周課外閱讀時間滿足的約有360人.
【解析】
【分析】根據(jù)等級A的人數(shù)及所占百分比即可得出調(diào)查學(xué)生人數(shù);
先計算出C在扇形圖中的百分比,用在扇形圖中的百分比可計算出B在扇形圖中的百分比,再計算出B在扇形的圓心角;
總?cè)藬?shù)課外閱讀時間滿足的百分比即得所求.
【詳解】由條形圖知,A級的人數(shù)為20人,
由扇形圖知:A級人數(shù)占總調(diào)查人數(shù)的,
所以:人,
即本次調(diào)查的學(xué)生人數(shù)為200人;
由條形圖知:C級的人數(shù)為60人,
所以C級所占的百分比為:,
B級所占的百分比為:,
B級的人數(shù)為人,
D級的人數(shù)為:人,
B所在扇形的圓心角為:,
補全條形圖如圖所示:
;
因為C級所占的百分比為,
所以全校每周課外閱讀時間滿足的人數(shù)為:人,
答:全校每周課外閱讀時間滿足的約有360人.
【點睛】本題考查了扇形圖和條形圖的相關(guān)知識,從統(tǒng)計圖中找到必要的信息進行解題是關(guān)鍵.扇形圖中某項的百分比,扇形圖中某項圓心角的度數(shù)該項在扇形圖中的百分比.
25、(1)x≠0;(2)﹣1;(3)見解析;(4)圖象關(guān)于y軸對稱.
【解析】
(1)由分母不等于零可得答案;
(2)求出y=1時x的值即可得;
(3)根據(jù)表格中的數(shù)據(jù),描點、連線即可得;
(4)由函數(shù)圖象即可得.
【詳解】
(1)函數(shù)y=的定義域是x≠0,
故答案為x≠0;
(2)當(dāng)y=1時,=1,
解得:x=1或x=﹣1,
∴m=﹣1,
故答案為﹣1;
(3)如圖所示:
(4)圖象關(guān)于y軸對稱,
故答案為圖象關(guān)于y軸對稱.
【點睛】
本題主要考查反比例函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是掌握反比例函數(shù)自變量的取值范圍、函數(shù)值的求法、列表描點畫函數(shù)圖象及反比例函數(shù)的性質(zhì).
26、改善后滑板會加長1.1米.
【解析】
在Rt△ABC中,根據(jù)AB=4米,∠ABC=45°,求出AC的長度,然后在Rt△ADC中,解直角三角形求AD的長度,用AD-AB即可求出滑板加長的長度.
【詳解】
解:在Rt△ABC中,AC=AB?sin45°=4×=,
在Rt△ADC中,AD=2AC=,
AD-AB=-4≈1.1.
答:改善后滑板會加長1.1米.
【點睛】
本題主要考查了解直角三角形的應(yīng)用,利用這兩個直角三角形公共的直角邊解直角三角形是解答本題的關(guān)鍵.
27、2 ﹣
【解析】
試題分析:利用相反數(shù)和倒數(shù)的定義即可得出.
先因式分解,再代入求出即可.
試題解析:是的相反數(shù),是的倒數(shù),
當(dāng)時,
點睛:只有符號不同的兩個數(shù)互為相反數(shù).
乘積為的兩個數(shù)互為倒數(shù).
相關(guān)試卷
這是一份2022年揚州市重點中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析,共18頁。試卷主要包含了答題時請按要求用筆等內(nèi)容,歡迎下載使用。
這是一份2022年湛江市重點中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析,共25頁。試卷主要包含了滿足不等式組的整數(shù)解是,在代數(shù)式 中,m的取值范圍是等內(nèi)容,歡迎下載使用。
這是一份2022年那曲市重點中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析,共18頁。試卷主要包含了答題時請按要求用筆,若=1,則符合條件的m有等內(nèi)容,歡迎下載使用。

相關(guān)試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內(nèi)免費重復(fù)下載