



2022屆廣西貴港市港北區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析
展開
這是一份2022屆廣西貴港市港北區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析,共22頁。試卷主要包含了答題時(shí)請(qǐng)按要求用筆,不等式3x<2,計(jì)算4+等內(nèi)容,歡迎下載使用。
?2021-2022中考數(shù)學(xué)模擬試卷
注意事項(xiàng):
1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。
2.答題時(shí)請(qǐng)按要求用筆。
3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。
4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。
5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。
一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)
1.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個(gè)數(shù)是( )
A.4 B.3 C.2 D.1
2.下列運(yùn)算正確的是( ?。?br />
A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3?x=x4
3.如圖,點(diǎn)D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個(gè)條件,不正確的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
4.﹣2×(﹣5)的值是( ?。?br />
A.﹣7 B.7 C.﹣10 D.10
5.為迎接中考體育加試,小剛和小亮分別統(tǒng)計(jì)了自己最近10次跳繩比賽,下列統(tǒng)計(jì)量中能用來比較兩人成績穩(wěn)定程度的是 ( )
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
6.若式子在實(shí)數(shù)范圍內(nèi)有意義,則 x的取值范圍是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
7.如圖,將△ABC沿DE,EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數(shù)為( )
A.38° B.39° C.42° D.48°
8.不等式3x<2(x+2)的解是( ?。?br />
A.x>2 B.x<2 C.x>4 D.x<4
9.下列圖形是幾家通訊公司的標(biāo)志,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A. B. C. D.
10.計(jì)算4+(﹣2)2×5=( )
A.﹣16 B.16 C.20 D.24
二、填空題(共7小題,每小題3分,滿分21分)
11.有公共頂點(diǎn)A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點(diǎn)D,則∠ADE的度數(shù)為( )
A.144° B.84° C.74° D.54°
12.計(jì)算a3÷a2?a的結(jié)果等于_____.
13.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側(cè)面上,過點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.
14.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線上. b =_________,c =_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).
15.若反比例函數(shù)y=的圖象在每一個(gè)象限中,y隨著x的增大而減小,則m的取值范圍是_____.
16.一個(gè)圓錐的高為3,側(cè)面展開圖是半圓,則圓錐的側(cè)面積是_________
17.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.
三、解答題(共7小題,滿分69分)
18.(10分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點(diǎn)E.
(1)如圖1,猜想∠QEP= °;
(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時(shí),其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;
(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
19.(5分)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B和D(4,).
(1)求拋物線的表達(dá)式.
(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā),沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ2(cm2).
①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取時(shí),在拋物線上是否存在點(diǎn)R,使得以點(diǎn)P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).
20.(8分)如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求△ACB的面積.
21.(10分)某汽車專賣店銷售A,B兩種型號(hào)的汽車.上周銷售額為96萬元:本周銷售額為62萬元,銷售情況如下表:
A型汽車
B型汽車
上周
1
3
本周
2
1
(1)求每輛A型車和B型車的售價(jià)各為多少元
(2)甲公司擬向該店購買A,B兩種型號(hào)的汽車共6輛,購車費(fèi)不少于130萬元,且不超過140萬元,則有哪幾種購車方案?哪種購車方案花費(fèi)金額最少?
22.(10分)已知拋物線y=a(x-1)2+3(a≠0)與y軸交于點(diǎn)A(0,2),頂點(diǎn)為B,且對(duì)稱軸l1與x軸交于點(diǎn)M
(1)求a的值,并寫出點(diǎn)B的坐標(biāo);
(2)將此拋物線向右平移所得新的拋物線與原拋物線交于點(diǎn)C,且新拋物線的對(duì)稱軸l2與x軸交于點(diǎn)N,過點(diǎn)C做DE∥x軸,分別交l1、l2于點(diǎn)D、E,若四邊形MDEN是正方形,求平移后拋物線的解析式.
23.(12分)已知:如圖,在□ABCD中,點(diǎn)G為對(duì)角線AC的中點(diǎn),過點(diǎn)G的直線EF分別交邊AB、CD于點(diǎn)E、F,過點(diǎn)G的直線MN分別交邊AD、BC于點(diǎn)M、N,且∠AGE=∠CGN.
(1)求證:四邊形ENFM為平行四邊形;
(2)當(dāng)四邊形ENFM為矩形時(shí),求證:BE=BN.
24.(14分)如圖,在矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交AD、AC、BC于點(diǎn)E、O、F,連接CE和AF.
(1)求證:四邊形AECF為菱形;
(2)若AB=4,BC=8,求菱形AECF的周長.
參考答案
一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)
1、B
【解析】
試題分析:由拋物線開口方向得a<0,由拋物線的對(duì)稱軸位置可得b>0,由拋物線與y軸的交點(diǎn)位置可得c>0,則可對(duì)①進(jìn)行判斷;根據(jù)拋物線與x軸的交點(diǎn)個(gè)數(shù)得到b2﹣4ac>0,加上a<0,則可對(duì)②進(jìn)行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對(duì)③進(jìn)行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點(diǎn)問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對(duì)④進(jìn)行判斷.
解:∵拋物線開口向下,
∴a<0,
∵拋物線的對(duì)稱軸在y軸的右側(cè),
∴b>0,
∵拋物線與y軸的交點(diǎn)在x軸上方,
∴c>0,
∴abc<0,所以①正確;
∵拋物線與x軸有2個(gè)交點(diǎn),
∴△=b2﹣4ac>0,
而a<0,
∴<0,所以②錯(cuò)誤;
∵C(0,c),OA=OC,
∴A(﹣c,0),
把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
∴ac﹣b+1=0,所以③正確;
設(shè)A(x1,0),B(x2,0),
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),
∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,
∴x1?x2=,
∴OA?OB=﹣,所以④正確.
故選B.
考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.
2、D
【解析】A. x4+x4=2x4 ,故錯(cuò)誤;B. (x2)3=x6 ,故錯(cuò)誤;C. (x﹣y)2=x2﹣2xy+y2 ,故錯(cuò)誤; D. x3?x=x4
,正確,故選D.
3、C
【解析】
由∠A是公共角,利用有兩角對(duì)應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.
【詳解】
∵∠A是公共角,
∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時(shí),△ADB∽△ABC(有兩角對(duì)應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;
當(dāng)AB:AD=AC:AB時(shí),△ADB∽△ABC(兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似),故D正確,不符合題意要求;
AB:BD=CB:AC時(shí),∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯(cuò)誤,符合題意要求,
故選C.
4、D
【解析】
根據(jù)有理數(shù)乘法法則計(jì)算.
【詳解】
﹣2×(﹣5)=+(2×5)=10.
故選D.
【點(diǎn)睛】
考查了有理數(shù)的乘法法則,(1) 兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;(2) 任何數(shù)同0相乘,都得0;(3) 幾個(gè)不等于0的數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;(4) 幾個(gè)數(shù)相乘,有一個(gè)因數(shù)為0時(shí),積為0 .
5、D
【解析】
根據(jù)方差反映數(shù)據(jù)的波動(dòng)情況即可解答.
【詳解】
由于方差反映數(shù)據(jù)的波動(dòng)情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.
故選D.
【點(diǎn)睛】
本題主要考查了統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.
6、A
【解析】
直接利用二次根式有意義的條件分析得出答案.
【詳解】
∵式子在實(shí)數(shù)范圍內(nèi)有意義,
∴ x﹣1>0, 解得:x>1.
故選:A.
【點(diǎn)睛】
此題主要考查了二次根式有意義的條件,正確把握定義是解題關(guān)鍵.
7、A
【解析】
分析:根據(jù)翻折的性質(zhì)得出∠A=∠DOE,∠B=∠FOE,進(jìn)而得出∠DOF=∠A+∠B,利用三角形內(nèi)角和解答即可.
詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.
故選A.
點(diǎn)睛:本題考查了三角形內(nèi)角和定理、翻折的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用這些知識(shí)解決問題,學(xué)會(huì)把條件轉(zhuǎn)化的思想,屬于中考??碱}型.
8、D
【解析】
不等式先展開再移項(xiàng)即可解答.
【詳解】
解:不等式3x<2(x+2),
展開得:3x<2x+4,
移項(xiàng)得:3x-2x<4,
解之得:x<4.
故答案選D.
【點(diǎn)睛】
本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握解一元一次不等式的步驟.
9、C
【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.
【詳解】
A.不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形.故錯(cuò)誤;
B.不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形.故錯(cuò)誤;
C.是軸對(duì)稱圖形,也是中心對(duì)稱圖形.故正確;
D.不是軸對(duì)稱圖形,是中心對(duì)稱圖形.故錯(cuò)誤.
故選C.
【點(diǎn)睛】
掌握好中心對(duì)稱圖形與軸對(duì)稱圖形的概念.
軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合;
中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180°后與原圖重合.
10、D
【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.
詳解:4+(﹣2)2×5
=4+4×5
=4+20
=24,
故選:D.
點(diǎn)睛:本題考查有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計(jì)算方法.
二、填空題(共7小題,每小題3分,滿分21分)
11、B
【解析】
正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.
12、a1
【解析】
根據(jù)同底數(shù)冪的除法法則和同底數(shù)冪乘法法則進(jìn)行計(jì)算即可.
【詳解】
解:原式=a3﹣1+1=a1.
故答案為a1.
【點(diǎn)睛】
本題考查了同底數(shù)冪的乘除法,關(guān)鍵是掌握計(jì)算法則.
13、
【解析】
要求絲線的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時(shí),根據(jù)勾股定理計(jì)算即可.
【詳解】
解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.
∵圓柱底面的周長為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長最小為2AC=4dm.
故答案為:4dm
【點(diǎn)睛】
本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.
14、(1),,(-1,0);(2)存在P的坐標(biāo)是或;(1)當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,)
【解析】
(1)將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點(diǎn)B的坐標(biāo);
(2)分別過點(diǎn)C和點(diǎn)A作AC的垂線,將拋物線與P1,P2兩點(diǎn)先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點(diǎn)坐標(biāo)即可;
(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點(diǎn)D的縱坐標(biāo),從而得到點(diǎn)P的縱坐標(biāo),然后由拋物線的解析式可求得點(diǎn)P的坐標(biāo).
【詳解】
解:(1)∵將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式得:,
解得:b=﹣2,c=﹣1,
∴拋物線的解析式為.
∵令,解得:,,
∴點(diǎn)B的坐標(biāo)為(﹣1,0).
故答案為﹣2;﹣1;(﹣1,0).
(2)存在.理由:如圖所示:
①當(dāng)∠ACP1=90°.由(1)可知點(diǎn)A的坐標(biāo)為(1,0).
設(shè)AC的解析式為y=kx﹣1.
∵將點(diǎn)A的坐標(biāo)代入得1k﹣1=0,解得k=1,
∴直線AC的解析式為y=x﹣1,
∴直線CP1的解析式為y=﹣x﹣1.
∵將y=﹣x﹣1與聯(lián)立解得,(舍去),
∴點(diǎn)P1的坐標(biāo)為(1,﹣4).
②當(dāng)∠P2AC=90°時(shí).設(shè)AP2的解析式為y=﹣x+b.
∵將x=1,y=0代入得:﹣1+b=0,解得b=1,
∴直線AP2的解析式為y=﹣x+1.
∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),
∴點(diǎn)P2的坐標(biāo)為(﹣2,5).
綜上所述,P的坐標(biāo)是(1,﹣4)或(﹣2,5).
(1)如圖2所示:連接OD.
由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短.
由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
∴D是AC的中點(diǎn).
又∵DF∥OC,
∴DF=OC=,
∴點(diǎn)P的縱坐標(biāo)是,
∴,解得:x=,
∴當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,).
15、m>1
【解析】
∵反比例函數(shù)的圖象在其每個(gè)象限內(nèi),y隨x的增大而減小,
∴>0,
解得:m>1,
故答案為m>1.
16、18π
【解析】解:設(shè)圓錐的半徑為 ,母線長為 .則
解得
17、x≥3 y=1
【解析】
根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負(fù)數(shù),結(jié)果是x≥3,y=1.
三、解答題(共7小題,滿分69分)
18、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)
【解析】
(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進(jìn)而可利用SAS證明△CQB≌△CPA,進(jìn)而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;
(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進(jìn)一步即可證得結(jié)論;
(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.
【詳解】
解:(1)∠QEP=60°;
證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,
∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
則在△CPA和△CQB中,
,
∴△CQB≌△CPA(SAS),
∴∠CQB=∠CPA,
又因?yàn)椤鱌EM和△CQM中,∠EMP=∠CMQ,
∴∠QEP=∠QCP=60°.
故答案為60;
(2)∠QEP=60°.以∠DAC是銳角為例.
證明:如圖2,∵△ABC是等邊三角形,
∴AC=BC,∠ACB=60°,
∵線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,
∴CP=CQ,∠PCQ=60°,
∴∠ACB+∠BCP=∠BCP+∠PCQ,
即∠ACP=∠BCQ,
在△ACP和△BCQ中,
,
∴△ACP≌△BCQ(SAS),
∴∠APC=∠Q,
∵∠1=∠2,
∴∠QEP=∠PCQ=60°;?
(3)連結(jié)CQ,作CH⊥AD于H,如圖3,
與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,
∵∠DAC=135°,∠ACP=15°,
∴∠APC=30°,∠CAH=45°,
∴△ACH為等腰直角三角形,
∴AH=CH=AC=×4=,
在Rt△PHC中,PH=CH=,
∴PA=PH?AH=-,
∴BQ=?.
【點(diǎn)睛】
本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計(jì)算、30°角的直角三角形的性質(zhì)等知識(shí),涉及的知識(shí)點(diǎn)多、綜合性強(qiáng),靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.
19、(1)拋物線的解析式為:;
(2)①S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;
②存在.R點(diǎn)的坐標(biāo)是(3,﹣);
(3)M的坐標(biāo)為(1,﹣).
【解析】
試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;
(2)①由勾股定理即可求出;②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo);
(3)A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,求出直線BD的解析式,把拋物線的對(duì)稱軸x=1代入即可求出M的坐標(biāo).
試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,
∵正方形的邊長2,
∴B的坐標(biāo)(2,﹣2)A點(diǎn)的坐標(biāo)是(0,﹣2),
把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
解得a=,b=﹣,c=﹣2,
∴拋物線的解析式為:,
答:拋物線的解析式為:;
(2)①由圖象知:PB=2﹣2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2﹣2t)2+t2,
即S=5t2﹣8t+4(0≤t≤1).
答:S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;
②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形.
∵S=5t2﹣8t+4(0≤t≤1),
∴當(dāng)S=時(shí),5t2﹣8t+4=,得20t2﹣32t+11=0,
解得t=,t=(不合題意,舍去),
此時(shí)點(diǎn)P的坐標(biāo)為(1,﹣2),Q點(diǎn)的坐標(biāo)為(2,﹣),
若R點(diǎn)存在,分情況討論:
(i)假設(shè)R在BQ的右邊,如圖所示,這時(shí)QR=PB,RQ∥PB,
則R的橫坐標(biāo)為3,R的縱坐標(biāo)為﹣,
即R(3,﹣),
代入,左右兩邊相等,
∴這時(shí)存在R(3,﹣)滿足題意;
(ii)假設(shè)R在QB的左邊時(shí),這時(shí)PR=QB,PR∥QB,
則R(1,﹣)代入,,
左右不相等,∴R不在拋物線上.(1分)
綜上所述,存點(diǎn)一點(diǎn)R(3,﹣)滿足題意.
答:存在,R點(diǎn)的坐標(biāo)是(3,﹣);
(3)如圖,M′B=M′A,
∵A關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為B,過B、D的直線與拋物線的對(duì)稱軸的交點(diǎn)為所求M,
理由是:∵M(jìn)A=MB,若M不為L與DB的交點(diǎn),則三點(diǎn)B、M、D構(gòu)成三角形,
∴|MB|﹣|MD|<|DB|,
即M到D、A的距離之差為|DB|時(shí),差值最大,
設(shè)直線BD的解析式是y=kx+b,把B、D的坐標(biāo)代入得:,
解得:k=,b=﹣,
∴y=x﹣,
拋物線的對(duì)稱軸是x=1,
把x=1代入得:y=﹣
∴M的坐標(biāo)為(1,﹣);
答:M的坐標(biāo)為(1,﹣).
考點(diǎn):二次函數(shù)綜合題.
20、(1)反比例函數(shù)解析式為y=,一次函數(shù)解析式為y=x+2;(2)△ACB的面積為1.
【解析】
(1)將點(diǎn)A坐標(biāo)代入y=可得反比例函數(shù)解析式,據(jù)此求得點(diǎn)B坐標(biāo),根據(jù)A、B兩點(diǎn)坐標(biāo)可得直線解析式;
(2)根據(jù)點(diǎn)B坐標(biāo)可得底邊BC=2,由A、B兩點(diǎn)的橫坐標(biāo)可得BC邊上的高,據(jù)此可得.
【詳解】
解:(1)將點(diǎn)A(2,4)代入y=,得:m=8,則反比例函數(shù)解析式為y=,
當(dāng)x=﹣4時(shí),y=﹣2,則點(diǎn)B(﹣4,﹣2),
將點(diǎn)A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
解得:,則一次函數(shù)解析式為y=x+2;
(2)由題意知BC=2,則△ACB的面積=×2×1=1.
【點(diǎn)睛】
本題主要考查一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積求法是解題的關(guān)鍵.
21、 (1) A型車售價(jià)為18萬元,B型車售價(jià)為26萬元. (2) 方案一:A型車2輛,B型車4輛;方案二:A型車3輛,B型車3輛;方案二花費(fèi)少.
【解析】
(1)根據(jù)題意列出二元一次方程組即可求解;(2)由題意列出不等式即可求解.
【詳解】
解:(1)設(shè)A型車售價(jià)為x元,B型車售價(jià)為y元,則:
解得:
答:A型車售價(jià)為18萬元,B型車售價(jià)為26萬元.
(2)設(shè)A型車購買m輛,則B型車購買(6-m)輛,
∴ 130≤18m+26(6-m) ≤140,∴:2≤m≤
方案一:A型車2輛,B型車4輛;方案二:A型車3輛,B型車3輛;
∴方案二花費(fèi)少
【點(diǎn)睛】
此題主要考查二元一次方程組與不等式的應(yīng)用,解題的關(guān)鍵是根據(jù)題意列出方程組與不等式進(jìn)行求解.
22、(1)a=-1,B坐標(biāo)為(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)如圖,設(shè)拋物線向右平移后的解析式為y=-(x-m)2+3,再用m表示點(diǎn)C的坐標(biāo),需分兩種情況討論,用待定系數(shù)法即可解決問題.
【詳解】
(1)把點(diǎn)A(0,2)代入拋物線的解析式可得,2=a+3,
∴a=-1,
∴拋物線的解析式為y=-(x-1)2+3,頂點(diǎn)為(1,3)
(2)如圖,設(shè)拋物線向右平移后的解析式為y=-(x-m)2+3,
由解得x=
∴點(diǎn)C的橫坐標(biāo)為
∵M(jìn)N=m-1,四邊形MDEN是正方形,
∴C(,m-1)
把C點(diǎn)代入y=-(x-1)2+3,
得m-1=-+3,
解得m=3或-5(舍去)
∴平移后的解析式為y=-(x-3)2+3,
當(dāng)點(diǎn)C在x軸的下方時(shí),C(,1-m)
把C點(diǎn)代入y=-(x-1)2+3,
得1-m=-+3,
解得m=7或-1(舍去)
∴平移后的解析式為y=-(x-7)2+3
綜上:平移后的解析式為y=-(x-3)2+3,或y=-(x-7)2+3.
【點(diǎn)睛】
此題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是熟知正方形的性質(zhì)與函數(shù)結(jié)合進(jìn)行求解.
23、(1)證明見解析;(2)證明見解析.
【解析】
分析:
(1)由已知條件易得∠EAG=∠FCG,AG=GC結(jié)合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;
(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結(jié)合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB ,AE=CN,從而可得AB=CB,由此可得BE=BN.
詳解:
(1)∵四邊形ABCD為平行四四邊形邊形,
∴AB//CD.
∴∠EAG=∠FCG.
∵點(diǎn)G為對(duì)角線AC的中點(diǎn),
∴AG=GC.
∵∠AGE=∠FGC,
∴△EAG≌△FCG.
∴EG=FG.
同理MG=NG.
∴四邊形ENFM為平行四邊形.
(2)∵四邊形ENFM為矩形,
∴EF=MN,且EG=,GN=,
∴EG=NG,
又∵AG=CG,∠AGE=∠CGN,
∴△EAG≌△NCG,
∴∠BAC=∠ACB ,AE=CN,
∴AB=BC,
∴AB-AE=CB-CN,
∴BE=BN.
點(diǎn)睛:本題是一道考查平行四邊形的判定和性質(zhì)及矩形性質(zhì)的題目,熟練掌握相關(guān)圖形的性質(zhì)和判定是順利解題的關(guān)鍵.
24、(1)見解析;(2)1
【解析】
(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;
(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設(shè)AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.
【詳解】
(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.
∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
又∵OA=OC,∴四邊形AECF是平行四邊形.
又∵EF⊥AC,∴平行四邊形AECF是菱形;
(2)設(shè)AF=x.
∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.
【點(diǎn)睛】
本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用,用了方程思想.
相關(guān)試卷
這是一份2023年廣西貴港市港北區(qū)中考數(shù)學(xué)三模試卷(含解析),共22頁。試卷主要包含了選擇題,填空題,計(jì)算題,解答題等內(nèi)容,歡迎下載使用。
這是一份2023年廣西貴港市港北區(qū)中考數(shù)學(xué)三模試卷,共17頁。
這是一份2023年廣西貴港市港北區(qū)中考數(shù)學(xué)一模試卷(含解析),共21頁。試卷主要包含了選擇題,填空題,計(jì)算題,解答題等內(nèi)容,歡迎下載使用。

相關(guān)試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請(qǐng)聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
- 2.壓縮包下載后請(qǐng)先用軟件解壓,再使用對(duì)應(yīng)軟件打開;軟件版本較低時(shí)請(qǐng)及時(shí)更新
- 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載