
1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。
2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。
一、選擇題(共10小題,每小題3分,共30分)
1.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機(jī)在大正方形及其內(nèi)部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是( )
A.0.2B.0.25C.0.4D.0.5
2.下列計算正確的是( )
A.a(chǎn)3﹣a2=aB.a(chǎn)2?a3=a6
C.(a﹣b)2=a2﹣b2D.(﹣a2)3=﹣a6
3.如圖,已知邊長為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)D在y軸上,且在點(diǎn)A下方,點(diǎn)E是邊長為2、中心在原點(diǎn)的正六邊形的一個頂點(diǎn),把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為( )
A.3B.4﹣C.4D.6﹣2
4.的值是
A.±3B.3C.9D.81
5.如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有( )
A.4個B.3個C.2個D.1個
6.如圖,一次函數(shù)y=x﹣1的圖象與反比例函數(shù)的圖象在第一象限相交于點(diǎn)A,與x軸相交于點(diǎn)B,點(diǎn)C在y軸上,若AC=BC,則點(diǎn)C的坐標(biāo)為( )
A.(0,1)B.(0,2)C.D.(0,3)
7.已知,C是線段AB的黃金分割點(diǎn),AC<BC,若AB=2,則BC=( )
A.3﹣B.(+1)C.﹣1D.(﹣1)
8.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是( )
A.B.C.D.
9.青藏高原是世界上海拔最高的高原,它的面積是 2500000 平方千米.將 2500000 用科學(xué)記數(shù)法表示應(yīng)為( )
A.B.C.D.
10.若|a|=﹣a,則a為( )
A.a(chǎn)是負(fù)數(shù)B.a(chǎn)是正數(shù)C.a(chǎn)=0D.負(fù)數(shù)或零
二、填空題(本大題共6個小題,每小題3分,共18分)
11.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運(yùn)動,當(dāng)⊙P與x軸相切時,圓心P的坐標(biāo)為_____.
12.若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,則______.
13.如圖,四邊形ABCD是菱形,∠DAB=50°,對角線AC,BD相交于點(diǎn)O,DH⊥AB于H,連接OH,則∠DHO=_____度.
14.如圖,直線l1∥l2,則∠1+∠2=____.
15.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:
①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長的最小值為4+2.
其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)
16.計算:________.
三、解答題(共8題,共72分)
17.(8分)如圖所示:△ABC是等腰三角形,∠ABC=90°.
(1)尺規(guī)作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫作法);
(2)垂直平分線l交AC于點(diǎn)D,求證:AB=2DH.
18.(8分)如圖,△ABC中,D是AB上一點(diǎn),DE⊥AC于點(diǎn)E,F(xiàn)是AD的中點(diǎn),F(xiàn)G⊥BC于點(diǎn)G,與DE交于點(diǎn)H,若FG=AF,AG平分∠CAB,連接GE,GD.
求證:△ECG≌△GHD;
19.(8分)學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.
(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;
(2)如圖④,等邊△ABC邊長AB=4,點(diǎn)O為它的外心,點(diǎn)M、N分別為邊AB、BC上的動點(diǎn)(不與端點(diǎn)重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;
(3)如圖⑤,等邊△ABC的邊長AB=4,點(diǎn)P為邊CA延長線上一點(diǎn),點(diǎn)Q為邊AB延長線上一點(diǎn),點(diǎn)D為BC邊中點(diǎn),且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.
20.(8分)解方程:=1.
21.(8分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;
(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點(diǎn)字母按逆時針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;
(3)連接ME,并直接寫出EM的長.
22.(10分)如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),經(jīng)過C作CD⊥AB于點(diǎn)D,CF是⊙O的切線,過點(diǎn)A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長.
23.(12分)如圖,AB=AD,AC=AE,BC=DE,點(diǎn)E在BC上.
求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB.
24.已知:△ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個小正方形的邊長是1個單位長度)
畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.
參考答案
一、選擇題(共10小題,每小題3分,共30分)
1、B
【解析】
設(shè)大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.
【詳解】
解:設(shè)大正方形邊長為2,則小正方形邊長為1,
因?yàn)槊娣e比是相似比的平方,
所以大正方形面積為4,小正方形面積為1,
則針孔扎到小正方形(陰影部分)的概率是;
故選:B.
【點(diǎn)睛】
本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.
2、D
【解析】
各項(xiàng)計算得到結(jié)果,即可作出判斷.
解:A、原式不能合并,不符合題意;
B、原式=a5,不符合題意;
C、原式=a2﹣2ab+b2,不符合題意;
D、原式=﹣a6,符合題意,
故選D
3、B
【解析】
分析:首先得到當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.
詳解:如圖,當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時DE最??;
∵△ABC是等邊三角形,D為BC的中點(diǎn),
∴AD⊥BC
∵AB=BC=2
∴AD=AB?sin∠B=,
∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,
∴OE=OE′=2
∵點(diǎn)A的坐標(biāo)為(0,6)
∴OA=6
∴DE′=OA-AD-OE′=4-
故選B.
點(diǎn)睛:本題考查了正多邊形的計算及等邊三角形的性質(zhì),解題的關(guān)鍵是從圖形中整理出直角三角形.
4、C
【解析】
試題解析:∵
∴的值是3
故選C.
5、A
【解析】
①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正確.只要證明DM垂直平分CF,即可證明;
④正確.設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【詳解】
如圖,過D作DM∥BE交AC于N.
∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于點(diǎn)F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正確;
∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于點(diǎn)F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;
設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正確.
故選A.
【點(diǎn)睛】
本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.解題時注意:相似三角形的對應(yīng)邊成比例.
6、B
【解析】
根據(jù)方程組求出點(diǎn)A坐標(biāo),設(shè)C(0,m),根據(jù)AC=BC,列出方程即可解決問題.
【詳解】
由,解得 或,
∴A(2,1),B(1,0),
設(shè)C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案為(0,2).
【點(diǎn)睛】
本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)問題、勾股定理、方程組等知識,解題的關(guān)鍵是會利用方程組確定兩個函數(shù)的交點(diǎn)坐標(biāo),學(xué)會用方程的思想思考問題.
7、C
【解析】
根據(jù)黃金分割點(diǎn)的定義,知BC為較長線段;則BC= AB,代入數(shù)據(jù)即可得出BC的值.
【詳解】
解:由于C為線段AB=2的黃金分割點(diǎn),且AC<BC,BC為較長線段;
則BC=2×=-1.
故答案為:-1.
【點(diǎn)睛】
本題考查了黃金分割,應(yīng)該識記黃金分割的公式:較短的線段=原線段的 倍,較長的線段=原線段的 倍.
8、D
【解析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據(jù)等邊對等角的性質(zhì)可得∠A=∠ACD,然后根據(jù)正切函數(shù)的定義列式求出∠A的正切值,即為tan∠ACD的值.
【詳解】
∵CD是AB邊上的中線,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故選D.
【點(diǎn)睛】
本題考查了銳角三角函數(shù)的定義,直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊對等角的性質(zhì),求出∠A=∠ACD是解本題的關(guān)鍵.
9、C
【解析】
分析:在實(shí)際生活中,許多比較大的數(shù),我們習(xí)慣上都用科學(xué)記數(shù)法表示,使書寫、計算簡便.
解答:解:根據(jù)題意:2500000=2.5×1.
故選C.
10、D
【解析】
根據(jù)絕對值的性質(zhì)解答.
【詳解】
解:當(dāng)a≤0時,|a|=-a,
∴|a|=-a時,a為負(fù)數(shù)或零,
故選D.
【點(diǎn)睛】
本題考查的是絕對值的性質(zhì),①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;②當(dāng)a是負(fù)有理數(shù)時,a的絕對值是它的相反數(shù)-a;③當(dāng)a是零時,a的絕對值是零.
二、填空題(本大題共6個小題,每小題3分,共18分)
11、(,1)或(﹣,1)
【解析】
根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.將P的縱坐標(biāo)代入函數(shù)解析式,求P點(diǎn)坐標(biāo)即可
【詳解】
根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.
當(dāng)y=1時, x1-1=1,解得x=±
當(dāng)y=-1時, x1-1=-1,方程無解
故P點(diǎn)的坐標(biāo)為()或(-)
【點(diǎn)睛】
此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.
12、1
【解析】
∵點(diǎn)P(m,﹣2)與點(diǎn)Q(3,n)關(guān)于原點(diǎn)對稱,
∴m=﹣3,n=2,
則(m+n)2018=(﹣3+2)2018=1,
故答案為1.
13、1.
【解析】
試題分析:∵四邊形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO=×50°=1°.
考點(diǎn):菱形的性質(zhì).
14、30°
【解析】
分別過A、B作l1的平行線AC和BD,則可知AC∥BD∥l1∥l2,再利用平行線的性質(zhì)求得答案.
【詳解】
如圖,分別過A、B作l1的平行線AC和BD,
∵l1∥l2,
∴AC∥BD∥l1∥l2,
∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
∵∠EAB+∠FBA=125°+85°=210°,
∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
即∠1+∠2+180°=210°,
∴∠1+∠2=30°,
故答案為30°.
【點(diǎn)睛】
本題主要考查平行線的性質(zhì)和判定,掌握平行線的性質(zhì)和判定是解題的關(guān)鍵,即①兩直線平行?同位角相等,②兩直線平行?內(nèi)錯角相等,③兩直線平行?同旁內(nèi)角互補(bǔ).
15、①②④
【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到 ,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH== ,可以求得其最小值,可以判斷④.
【詳解】
解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,
,
∴△BOE≌△COF,
∴BE=CF,
∴ ,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.
③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④
【點(diǎn)睛】
考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強(qiáng).
16、
【解析】
根據(jù)二次根式的運(yùn)算法則先算乘法,再將分母有理化,然后相加即可.
【詳解】
解:原式=
=
【點(diǎn)睛】
本題考查了二次根式的混合運(yùn)算:先把各二次根式化簡為最簡二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.
三、解答題(共8題,共72分)
17、 (1)見解析;(2)證明見解析.
【解析】
(1)利用線段垂直平分線的作法,分別以A,B為端點(diǎn),大于為半徑作弧,得出直線l即可;
(2)利用利用平行線的性質(zhì)以及平行線分線段成比例定理得出點(diǎn)D是AC的中點(diǎn),進(jìn)而得出答案.
【詳解】
解:(1)如圖所示:直線l即為所求;
(2)證明:∵點(diǎn)H是AB的中點(diǎn),且DH⊥AB,
∴DH∥BC,
∴點(diǎn)D是AC的中點(diǎn),
∵
∴AB=2DH.
【點(diǎn)睛】
考查作圖—基本作圖,線段垂直平分線的性質(zhì),等腰三角形的性質(zhì)等,熟練掌握垂直平分線的性質(zhì)是解題的性質(zhì).
18、見解析
【解析】
依據(jù)條件得出∠C=∠DHG=90°,∠CGE=∠GED,依據(jù)F是AD的中點(diǎn),F(xiàn)G∥AE,即可得到FG是線段ED的垂直平分線,進(jìn)而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.
【詳解】
證明:∵AF=FG,
∴∠FAG=∠FGA,
∵AG 平分∠CAB,
∴∠CAG=∠FAG,
∴∠CAG=∠FGA,
∴AC∥FG.
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∵F 是 AD 的中點(diǎn),F(xiàn)G∥AE,
∴H 是 ED 的中點(diǎn)
∴FG 是線段 ED 的垂直平分線,
∴GE=GD,∠GDE=∠GED,
∴∠CGE=∠GDE,
∴△ECG≌△GHD.(AAS).
【點(diǎn)睛】
本題考查了全等三角形的判定,線段垂直平分線的判定與性質(zhì),熟練掌握全等三角形的判定定理是解決問題的關(guān)鍵.
19、(1)詳見解析;(2)2+2;(3)S△BDQx+.
【解析】
(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.
(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因?yàn)閘=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因?yàn)镺M=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時,OM定值最小,由此即可解決問題.
(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.
【詳解】
解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,
如圖2,連接外心和各頂點(diǎn)的線段可分割成3個全等三角形,
如圖3,連接各邊的中點(diǎn)可分割成4個全等三角形,
(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.
∵△ABC是等邊三角形,O是外心,
∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
∴OE=OF,
∵∠OEB=∠OFB=90°,
∴∠EOF+∠EBF=180°,
∴∠EOF=∠NOM=120°,
∴∠EOM=∠FON,
∴△OEM≌△OFN(ASA),
∴EM=FN,ON=OM,S△EOM=S△NOF,
∴S四邊形BMON=S四邊形BEOF=定值,
∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
∴Rt△OBE≌Rt△OBF(HL),
∴BE=BF,
∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
∴欲求最小值,只要求出l的最小值,
∵l=BM+BN+ON+OM=定值+ON+OM,
欲求最小值,只要求出ON+OM的最小值,
∵OM=ON,根據(jù)垂線段最短可知,當(dāng)OM與OE重合時,OM定值最小,
此時定值最小,s=×2×=,l=2+2++=4+,
∴的最小值==2+2.
(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.
∵△ABC是等邊三角形,BD=DC,
∴AD平分∠BAC,
∵DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠DEA=∠DEQ=∠AFD=90°,
∴∠EAF+∠EDF=180°,
∵∠EAF=60°,
∴∠EDF=∠PDQ=120°,
∴∠PDF=∠QDE,
∴△PDF≌△QDE(ASA),
∴PF=EQ,
在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
∴CF=CD=1,DF=,
同法可得:BE=1,DE=DF=,
∵AF=AC﹣CF=4﹣1=3,PA=x,
∴PF=EQ=3+x,
∴BQ=EQ﹣BE=2+x,
∴S△BDQ=?BQ?DE=×(2+x)×=x+.
【點(diǎn)睛】
本題主要考查多邊形的綜合題,主要涉及的知識點(diǎn):全等三角形的判定和性質(zhì)、多邊形內(nèi)角和、角平分線的性質(zhì)、等量代換、三角形的面積等,牢記并熟練運(yùn)用這些知識點(diǎn)是解此類綜合題的關(guān)鍵。
20、x=1
【解析】
方程兩邊同乘轉(zhuǎn)化為整式方程,解整式方程后進(jìn)行檢驗(yàn)即可得.
【詳解】
解:方程兩邊同乘得:
,
整理,得,
解這個方程得,,
經(jīng)檢驗(yàn),是增根,舍去,
所以,原方程的根是.
【點(diǎn)睛】
本題考查了解分式方程,解分式方程的關(guān)鍵是方程兩邊同乘分母的最簡公分母化為整式方程然后求解,注意要進(jìn)行檢驗(yàn).
21、(1)畫圖見解析;(2)畫圖見解析;(3).
【解析】
(1)直接利用直角三角形的性質(zhì)結(jié)合勾股定理得出符合題意的圖形;
(2)根據(jù)矩形的性質(zhì)畫出符合題意的圖形;
(3)根據(jù)題意利用勾股定理得出結(jié)論.
【詳解】
(1)如圖所示;
(2)如圖所示;
(3)如圖所示,在直角三角形中,根據(jù)勾股定理得EM=.
【點(diǎn)睛】
本題考查了勾股定理與作圖,解題的關(guān)鍵是熟練的掌握直角三角形的性質(zhì)與勾股定理.
22、(1)證明見解析(2)
【解析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cs∠EAC=,cs∠CAB==,∠EAC=∠CAB,得=.
【詳解】
(1)證明:連接OC,如圖所示,
∵CD⊥AB,AE⊥CF,
∴∠AEC=∠ADC=90°,
∵CF是圓O的切線,
∴CO⊥CF,即∠ECO=90°,
∴AE∥OC,
∴∠EAC=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠EAC=∠CAO,
在△CAE和△CAD中,
,
∴△CAE≌△CAD(AAS),
∴AE=AD;
(2)解:連接CB,如圖所示,
∵△CAE≌△CAD,AE=3,
∴AD=AE=3,
∴在Rt△ACD中,AD=3,CD=4,
根據(jù)勾股定理得:AC=5,
在Rt△AEC中,cs∠EAC==,
∵AB為直徑,
∴∠ACB=90°,
∴cs∠CAB==,
∵∠EAC=∠CAB,
∴=,即AB=.
【點(diǎn)睛】
本題考核知識點(diǎn):切線性質(zhì),銳角三角函數(shù)的應(yīng)用. 解題關(guān)鍵點(diǎn):由全等三角形性質(zhì)得到線段相等,根據(jù)直角三角形性質(zhì)得到相應(yīng)等式.
23、(1)詳見解析;(2)詳見解析.
【解析】
(1)用“SSS”證明即可;
(2)借助全等三角形的性質(zhì)及角的和差求出∠DAB=∠EAC,再利用三角形內(nèi)角和定理求出∠DEB=∠DAB,即可說明∠EAC=∠DEB.
【詳解】
解:(1)在△ABC和△ADE中
∴△ABC≌△ADE(SSS);
(2)由△ABC≌△ADE,
則∠D=∠B,∠DAE=∠BAC.
∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.
設(shè)AB和DE交于點(diǎn)O,
∵∠DOA=BOE,∠D=∠B,
∴∠DEB=∠DAB.
∴∠EAC=∠DEB.
【點(diǎn)睛】
本題主要考查了全等三角形的判定和性質(zhì),解題的關(guān)鍵是利用全等三角形的性質(zhì)求出相等的角,體現(xiàn)了轉(zhuǎn)化思想的運(yùn)用.
24、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10
【解析】
分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu),找出點(diǎn)A、B、C向下平移4個單位的對應(yīng)點(diǎn)、、 的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)的坐標(biāo);(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)的坐標(biāo),利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.
本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)
(2)如圖,△B為所求, (1,0),
△B 的面積:
6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,
這是一份2021-2022學(xué)年湛江市重點(diǎn)名校中考押題數(shù)學(xué)預(yù)測卷含解析,共18頁。試卷主要包含了下列說法正確的是等內(nèi)容,歡迎下載使用。
這是一份2021-2022學(xué)年深圳龍文重點(diǎn)名校中考押題數(shù)學(xué)預(yù)測卷含解析,共22頁。試卷主要包含了考生必須保證答題卡的整潔,函數(shù)y=自變量x的取值范圍是,﹣的絕對值是等內(nèi)容,歡迎下載使用。
這是一份2021-2022學(xué)年上海市靜安區(qū)重點(diǎn)名校中考押題數(shù)學(xué)預(yù)測卷含解析,共19頁。試卷主要包含了已知A樣本的數(shù)據(jù)如下等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊
注冊成功