



2022南昌高三上學(xué)期摸底考試數(shù)學(xué)(理)試題含答案
展開(kāi)
這是一份2022南昌高三上學(xué)期摸底考試數(shù)學(xué)(理)試題含答案,共11頁(yè)。試卷主要包含了考生必須保證答題卡整潔,直線,,則“”是“”的,已知向量,,則,已知,且,則的值為,函數(shù)的圖像大致為,已知數(shù)列滿足,則的前20項(xiàng)和等內(nèi)容,歡迎下載使用。
南昌市2022屆高三摸底測(cè)試卷理科數(shù)學(xué)本試卷共4頁(yè),23小題,滿分150分0考試時(shí)間120分鐘.注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填涂在答題卡上,并在相應(yīng)位置貼好條形碼.2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案信息涂黑、如需改動(dòng),用橡皮擦干凈后,再選涂其它答案.3.非選擇題必須用黑色水筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)答案,然后再寫(xiě)上新答案,不準(zhǔn)使用鉛筆和涂改液.不按以上要求作答無(wú)效.4.考生必須保證答題卡整潔.考試結(jié)束后,將試卷和答題卡一并交回.一.選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.集合的元素個(gè)數(shù)為( )A.3 B.4 C.5 D.62.若z為純虛數(shù),且,則( )A.i B.-i C.2i D.-2i3.為數(shù)列的前n項(xiàng)和,若,,則( )A. B. C.10 D.4.設(shè)F為拋物線焦點(diǎn),直線,點(diǎn)A為C上任意一點(diǎn),過(guò)點(diǎn)A作于P,則( )A.3 B.4 C.2. D.不能確定5.直線,,則“”是“”的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知向量,,則( )A. B. C. D.57.某市出臺(tái)兩套出租車計(jì)價(jià)方案,方案一:2公里以內(nèi)收費(fèi)8元(起步價(jià)),超過(guò)2公里的部分每公里收費(fèi)3元,不足1公里按1公里計(jì)算;方案二:3公里以內(nèi)收費(fèi)12元(起步價(jià)),超過(guò)3公里不超過(guò)10公里的部分每公里收費(fèi)2.5元,超過(guò)10公里的部分每公里收費(fèi)3.5元,不足1公里按1公里計(jì)算.以下說(shuō)法正確的是( )A.方案二比方案一更優(yōu)惠B.乘客甲打車行駛4公里,他應(yīng)該選擇方案二C.乘客乙打車行駛12公里,他應(yīng)該選擇方案二D.乘客丙打車行駛16公里,他應(yīng)該選擇方案二8.已知,且,則的值為( )A. B. C. D.9.函數(shù)的圖像大致為( )A.B.C.D.10.已知數(shù)列滿足,則的前20項(xiàng)和( )A. B. C. D.11.已知雙曲線的左、右焦點(diǎn)分別為、,過(guò)的直線l與C的左、右支分別相交于M、N兩點(diǎn),若,,則雙曲線的離心率為( )A. B. C.2 D.12.已知函數(shù),若,若點(diǎn)不可能在曲線C上,則曲線C的方程可以是( )A. B.C. D.二.填空題:本題共4小題,每小題5分,共20分.13.某企業(yè)三個(gè)分廠生產(chǎn)同一種電子產(chǎn)品,三個(gè)分廠的產(chǎn)量分布如圖所示.現(xiàn)在用分層抽樣方法從三個(gè)分廠生產(chǎn)的產(chǎn)品中共抽取100件進(jìn)行使用壽命的測(cè)試,測(cè)試結(jié)果為第一、二、三分廠取出的產(chǎn)品的平均使用壽命分別為1020小時(shí)、980小時(shí)、1030小時(shí),估計(jì)這個(gè)企業(yè)生產(chǎn)的產(chǎn)品的平均使用壽命為________小時(shí).14.若的展開(kāi)式中共有7項(xiàng),則常數(shù)項(xiàng)為________(用數(shù)字作答).15.執(zhí)行如下框圖,若輸出的,則輸入x的取值范圍為________.16.正四棱錐,底面四邊形為邊長(zhǎng)為2的正方形,,其內(nèi)切球?yàn)榍?/span>G,平面過(guò)與棱,分別交于點(diǎn)M,N,且與平面所成二面角為30°,則平面截球G所得的圖形的面積為________.三.解答題:共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.第17~21題為必考題,每個(gè)試題考生都必須作答;第22、23題為選考題,考生根據(jù)要求作答.(一)必考題:共60分.17.(12分)在中,角A,B,C所對(duì)的邊分別為a,b,c,,.(Ⅰ)求的值;(Ⅱ)已知的面積為,求b邊.18.(12分)如圖在四棱錐中,底面為正方形,為等邊三角形,E為中點(diǎn),平面平面.(I)求證:平面;(II)求二面角的余弦值.19.(12分)己知橢圓,,分別為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),P為橢圓上任意一點(diǎn).(Ⅰ)若,求的面積;(Ⅱ)斜率為1的直線與橢圓相交于A,B兩點(diǎn),,求直線的方程.20.(12分)已知函數(shù).(Ⅰ)若函數(shù)在定義域上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(Ⅱ)若函數(shù)存在兩個(gè)極值點(diǎn),,求實(shí)數(shù)a的取值范圍,并比較與的大?。?/span>21.(12分)甲、乙、丙、丁、戊五位同學(xué)參加一次節(jié)日活動(dòng),他們都有機(jī)會(huì)抽取獎(jiǎng)券.墻上掛著兩串獎(jiǎng)券袋(如圖),A,B,C,D,E五個(gè)袋子分別裝有價(jià)值100,80,120,200,90(單位:元)的獎(jiǎng)券,抽取方法是這樣的:每個(gè)同學(xué)只能從其中一串的最下端取一個(gè)袋子,得到其中獎(jiǎng)券,直到禮物取完為止.甲先取,然后乙、丙、丁、戊依次取,若兩串都有禮物袋,則每個(gè)人等可能選擇一串?。?/span>(Ⅰ)求丙取得的禮物券為80元的概率;(Ⅱ)記丁取得的禮物券為X元,求X的分布列及其數(shù)學(xué)期望.(二)選考題:共10分.請(qǐng)考生在第22、23題中任選一題作答,如果多做,則按所做的第一題計(jì)分.22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;(Ⅱ)設(shè),直線l與曲線C的交點(diǎn)為M,N,求.23.(10分)選修4-5:不等式選講已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)a的取值范圍. 2022屆高三摸底測(cè)試卷理科數(shù)學(xué)參考答案及評(píng)分標(biāo)準(zhǔn)一、選擇題:本大題共12個(gè)小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.題號(hào)123456789101112答案CCCAAACCBDBC二.填空題:本大題共4小題,每小題5分,滿分20分.13.1015 14.240 15. 16.三.解答題:共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.第17題-21題為必考題,每個(gè)試題考生都必須作答.第22題、23題為選考題,考生根據(jù)要求作答.17.【解析】(Ⅰ)由正弦定理,(其中R為外接圓的半徑),所以,,,代入已知條件可得:,····································································2分所以,即,·············································································4分,故.·················································································6分(Ⅱ)由已知可得,所以的面積為,故,解得,.···········································································9分所以,即.············································································12分18.【解析】(Ⅰ)連接交于點(diǎn)O,連接、,因?yàn)?/span>為等邊三角形,所以,因?yàn)榈酌?/span>為正方形,所以,因?yàn)?/span>,所以平面,········································································3分又平面,所以,因?yàn)槠矫?/span>平面,平面平面,所以平面,因?yàn)?/span>E為中點(diǎn),所以,則平面.······························································5分(Ⅱ)如圖,以為x軸,為y軸,為z軸,建立空間直角坐標(biāo)系,設(shè),則,所以,,,,則,,,因?yàn)槠矫?/span>平面,所以平面的法向量為,····································································7分設(shè)平面的法向量為,則,所以,所以,···········································································9分所以,·················································································11分所以二面角的余弦值為.··································································12分19.【解析】(Ⅰ)由題意,解得,,····························································2分又,所以,即,··················································································4分所以;·················································································5分(Ⅱ)直線斜率為1,設(shè)直線方程,,,由,消元得,得··········································································7分又,知,即·············································································9分而所以,,得,滿足,所以直線的方程或.·····································································12分20.【解析】(Ⅰ)由得······································································2分由題在恒成立,即在恒成立而,所以;·············································································5分(Ⅱ)由題意知,,是方程在內(nèi)的兩個(gè)不同實(shí)數(shù)解,令,注意到,其對(duì)稱軸為直線,故只需,解得,即實(shí)數(shù)a的取值范圍為;···································································8分由,是方程的兩根,得,,因此,···················································································10分又,所以,即得證.··············································································12分21.【解析】(Ⅰ)由題意知,列舉如下:····························································2分所以丙取得的禮物券為80元的概率;(Ⅱ)如下圖,所以X的可能取值為100,80,200,90,又因?yàn)?/span>;;;;所以分布列為:··········································································8分(每個(gè)概率1分)X8090100200P所以.22.【解析】(Ⅰ)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為普通方程為········································································2分曲線C的極坐標(biāo)方程為,根據(jù)轉(zhuǎn)換為直角坐標(biāo)方程為.·······························································5分(Ⅱ)易知直線l的參數(shù)方程標(biāo)準(zhǔn)形式為代入到中,得到;設(shè)M,N所對(duì)應(yīng)的參數(shù)分別為,,則,,·················································································8分所以.················································································10分23.【解析】(Ⅰ)因?yàn)?/span>,所以,當(dāng)時(shí),,所以;當(dāng)時(shí),,所以,綜上不等式的解集為.····································································5分(II)因?yàn)?/span>,···········································································8分當(dāng)時(shí),在單調(diào)遞增;當(dāng)時(shí),;所以函數(shù)的最小值是a,所以.·····························································10分
相關(guān)試卷
這是一份2022成都高三上學(xué)期7月摸底考試(零診)試題數(shù)學(xué)(理)含答案,共9頁(yè)。試卷主要包含了答非選擇題時(shí),必須使用0,考試結(jié)束后,只將答題卡交回,記函數(shù)f的導(dǎo)函數(shù)為f',已知直線l1等內(nèi)容,歡迎下載使用。
這是一份2022貴陽(yáng)高三上學(xué)期8月摸底考試數(shù)學(xué)(理)含答案,共14頁(yè)。試卷主要包含了請(qǐng)保持答題卡平整,不能折疊等內(nèi)容,歡迎下載使用。
這是一份2022南昌高三上學(xué)期摸底考試?yán)砜茢?shù)學(xué)試題掃描版含答案,共6頁(yè)。

相關(guān)試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問(wèn)題請(qǐng)聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
- 2.壓縮包下載后請(qǐng)先用軟件解壓,再使用對(duì)應(yīng)軟件打開(kāi);軟件版本較低時(shí)請(qǐng)及時(shí)更新
- 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載