
?2021-2022中考數(shù)學(xué)模擬試卷
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。
2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。
3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。
4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點(diǎn)O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為( )
A.54° B.64° C.74° D.26°
2.某單位組織職工開(kāi)展植樹(shù)活動(dòng),植樹(shù)量與人數(shù)之間關(guān)系如圖,下列說(shuō)法不正確的是( ?。?br />
A.參加本次植樹(shù)活動(dòng)共有30人 B.每人植樹(shù)量的眾數(shù)是4棵
C.每人植樹(shù)量的中位數(shù)是5棵 D.每人植樹(shù)量的平均數(shù)是5棵
3.衡陽(yáng)市某生態(tài)示范園計(jì)劃種植一批梨樹(shù),原計(jì)劃總產(chǎn)值30萬(wàn)千克,為了滿(mǎn)足市場(chǎng)需求,現(xiàn)決定改良梨樹(shù)品種,改良后平均每畝產(chǎn)量是原來(lái)的1.5倍,總產(chǎn)量比原計(jì)劃增加了6萬(wàn)千克,種植畝數(shù)減少了10畝,則原來(lái)平均每畝產(chǎn)量是多少萬(wàn)千克?設(shè)原來(lái)平均每畝產(chǎn)量為萬(wàn)千克,根據(jù)題意,列方程為
A. B.
C. D.
4.如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.
下面有三個(gè)推斷:
①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著試驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的頻率一定是0.1.
其中合理的是( ?。?br />
A.① B.② C.①② D.①③
5. “保護(hù)水資源,節(jié)約用水”應(yīng)成為每個(gè)公民的自覺(jué)行為.下表是某個(gè)小區(qū)隨機(jī)抽查到的10戶(hù)家庭的月用水情況,則下列關(guān)于這10戶(hù)家庭的月用水量說(shuō)法錯(cuò)誤的是( )
月用水量(噸)
4
5
6
9
戶(hù)數(shù)(戶(hù))
3
4
2
1
A.中位數(shù)是5噸 B.眾數(shù)是5噸 C.極差是3噸 D.平均數(shù)是5.3噸
6.如圖,AB是⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且∠AOC=126°,則∠CDB=( ?。?br />
A.54° B.64° C.27° D.37°
7.下列說(shuō)法正確的是( )
A.對(duì)角線相等且互相垂直的四邊形是菱形
B.對(duì)角線互相平分的四邊形是正方形
C.對(duì)角線互相垂直的四邊形是平行四邊形
D.對(duì)角線相等且互相平分的四邊形是矩形
8.cos45°的值是(?????)
A.???????????????????????????????????????? B.???????????????????????????????????????? C.???????????????????????????????????????? D.1
9.如圖所示幾何體的主視圖是( )
A. B. C. D.
10.已知為單位向量,=,那么下列結(jié)論中錯(cuò)誤的是( )
A.∥ B. C.與方向相同 D.與方向相反
11.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學(xué)記數(shù)法表示為( )
A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106
12.將拋物線向左平移1個(gè)單位,再向下平移3個(gè)單位后所得拋物線的解析式為( )
A. B. C. D.
二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)
13.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.
14.和平中學(xué)自行車(chē)停車(chē)棚頂部的剖面如圖所示,已知AB=16m,半徑OA=10m,高度CD為_(kāi)___m.
15.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點(diǎn)A、B、C、D、O都在橫格線上,且線段AD,BC交于點(diǎn)O,則AB:CD等于______.
16.分式方程-1=的解是x=________.
17.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時(shí)后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為_(kāi)___________海里/時(shí).
18.如圖,在△ABC中,∠C=90°,D是AC上一點(diǎn),DE⊥AB于點(diǎn)E,若AC=8,BC=6,DE=3,則AD的長(zhǎng)為 ________.
三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
19.(6分)某企業(yè)信息部進(jìn)行市場(chǎng)調(diào)研發(fā)現(xiàn):
信息一:如果單獨(dú)投資A種產(chǎn)品,所獲利潤(rùn)yA(萬(wàn)元)與投資金額x(萬(wàn)元)之間存在某種關(guān)系的部分對(duì)應(yīng)值如下表:
x(萬(wàn)元)
1
2
2.5
3
5
yA(萬(wàn)元)
0.4
0.8
1
1.2
2
信息二:如果單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬(wàn)元)與投資金額x(萬(wàn)元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬(wàn)元時(shí)獲利潤(rùn)2.4萬(wàn)元,當(dāng)投資4萬(wàn)元時(shí),可獲利潤(rùn)3.2萬(wàn)元.
(1)求出yB與x的函數(shù)關(guān)系式;
(2)從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式;
(3)如果企業(yè)同時(shí)對(duì)A、B兩種產(chǎn)品共投資15萬(wàn)元,請(qǐng)?jiān)O(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少?
20.(6分)如圖,平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3),點(diǎn)B(,0),連接AB,若對(duì)于平面內(nèi)一點(diǎn)C,當(dāng)△ABC是以AB為腰的等腰三角形時(shí),稱(chēng)點(diǎn)C是線段AB的“等長(zhǎng)點(diǎn)”.
(1)在點(diǎn)C1(﹣2,3+2),點(diǎn)C2(0,﹣2),點(diǎn)C3(3+,﹣)中,線段AB的“等長(zhǎng)點(diǎn)”是點(diǎn)________;
(2)若點(diǎn)D(m,n)是線段AB的“等長(zhǎng)點(diǎn)”,且∠DAB=60°,求點(diǎn)D的坐標(biāo);
(3)若直線y=kx+3k上至少存在一個(gè)線段AB的“等長(zhǎng)點(diǎn)”,求k的取值范圍.
21.(6分)先化簡(jiǎn),再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.
22.(8分)如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長(zhǎng)為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)若∠B=30°,求證:以A、O、D、E為頂點(diǎn)的四邊形是菱形.
(2)若AC=6,AB=10,連結(jié)AD,求⊙O的半徑和AD的長(zhǎng).
23.(8分)某文教店老板到批發(fā)市場(chǎng)選購(gòu)A、B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購(gòu)進(jìn)A種套裝的數(shù)量是用75元購(gòu)進(jìn)B種套裝數(shù)量的2倍.求A、B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購(gòu)進(jìn)B品牌的數(shù)量比購(gòu)進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過(guò)120元,則最少購(gòu)進(jìn)A品牌工具套裝多少套?
24.(10分)如圖,是的直徑,是圓上一點(diǎn),弦于點(diǎn),且.過(guò)點(diǎn)作的切線,過(guò)點(diǎn)作的平行線,兩直線交于點(diǎn),的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn).
(1)求證:與相切;
(2)連接,求的值.
25.(10分)“賞中華詩(shī)詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國(guó)詩(shī)詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫(xiě)50首古詩(shī)詞,若每正確默寫(xiě)出一首古詩(shī)詞得2分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
請(qǐng)結(jié)合圖表完成下列各題:
(1)①表中a的值為 ,中位數(shù)在第 組;
②頻數(shù)分布直方圖補(bǔ)充完整;
(2)若測(cè)試成績(jī)不低于80分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
組別
成績(jī)x分
頻數(shù)(人數(shù))
第1組
50≤x<60
6
第2組
60≤x<70
8
第3組
70≤x<80
14
第4組
80≤x<90
a
第5組
90≤x<100
10
26.(12分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過(guò)點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱(chēng)軸上,以Q為圓心的圓過(guò)A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
27.(12分)在連接A、B兩市的公路之間有一個(gè)機(jī)場(chǎng)C,機(jī)場(chǎng)大巴由A市駛向機(jī)場(chǎng)C,貨車(chē)由B市駛向A市,兩車(chē)同時(shí)出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場(chǎng)大巴、貨車(chē)到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.直接寫(xiě)出連接A、B兩市公路的路程以及貨車(chē)由B市到達(dá)A市所需時(shí)間.求機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.求機(jī)場(chǎng)大巴與貨車(chē)相遇地到機(jī)場(chǎng)C的路程.
參考答案
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1、B
【解析】
根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).
【詳解】
∵四邊形ABCD為菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=26°,
∴∠BCA=∠DAC=26°,
∴∠OBC=90°﹣26°=64°.
故選B.
【點(diǎn)睛】
本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對(duì)邊平行以及對(duì)角線相互垂直的性質(zhì).
2、D
【解析】
試題解析:A、∵4+10+8+6+2=30(人),
∴參加本次植樹(shù)活動(dòng)共有30人,結(jié)論A正確;
B、∵10>8>6>4>2,
∴每人植樹(shù)量的眾數(shù)是4棵,結(jié)論B正確;
C、∵共有30個(gè)數(shù),第15、16個(gè)數(shù)為5,
∴每人植樹(shù)量的中位數(shù)是5棵,結(jié)論C正確;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植樹(shù)量的平均數(shù)約是4.73棵,結(jié)論D不正確.
故選D.
考點(diǎn):1.條形統(tǒng)計(jì)圖;2.加權(quán)平均數(shù);3.中位數(shù);4.眾數(shù).
3、A
【解析】
根據(jù)題意可得等量關(guān)系:原計(jì)劃種植的畝數(shù)改良后種植的畝數(shù)畝,根據(jù)等量關(guān)系列出方程即可.
【詳解】
設(shè)原計(jì)劃每畝平均產(chǎn)量萬(wàn)千克,則改良后平均每畝產(chǎn)量為萬(wàn)千克,
根據(jù)題意列方程為:.
故選:.
【點(diǎn)睛】
本題考查了由實(shí)際問(wèn)題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.
4、B
【解析】
①當(dāng)頻數(shù)增大時(shí),頻率逐漸穩(wěn)定的值即為概率,500次的實(shí)驗(yàn)次數(shù)偏低,而頻率穩(wěn)定在了0.618,錯(cuò)誤;②由圖可知頻數(shù)穩(wěn)定在了0.618,所以估計(jì)頻率為0.618,正確;③.這個(gè)實(shí)驗(yàn)是一個(gè)隨機(jī)試驗(yàn),當(dāng)投擲次數(shù)為1000時(shí),釘尖向上”的概率不一定是0.1.錯(cuò)誤,
故選B.
【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,能正確理解相關(guān)概念是解題的關(guān)鍵.
5、C
【解析】
根據(jù)中位數(shù)、眾數(shù)、極差和平均數(shù)的概念,對(duì)選項(xiàng)一一分析,即可選擇正確答案.
【詳解】
解:A、中位數(shù)=(5+5)÷2=5(噸),正確,故選項(xiàng)錯(cuò)誤;
B、數(shù)據(jù)5噸出現(xiàn)4次,次數(shù)最多,所以5噸是眾數(shù),正確,故選項(xiàng)錯(cuò)誤;
C、極差為9﹣4=5(噸),錯(cuò)誤,故選項(xiàng)正確;
D、平均數(shù)=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項(xiàng)錯(cuò)誤.
故選:C.
【點(diǎn)睛】
此題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差的概念.要掌握這些基本概念才能熟練解題.
6、C
【解析】
由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).
【詳解】
解:∵∠AOC=126°,
∴∠BOC=180°﹣∠AOC=54°,
∵∠CDB=∠BOC=27°
故選:C.
【點(diǎn)睛】
此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
7、D
【解析】
分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進(jìn)行判定,即可解答.
詳解:A、對(duì)角線互相平分且垂直的四邊形是菱形,故錯(cuò)誤;
B、四條邊相等的四邊形是菱形,故錯(cuò)誤;
C、對(duì)角線相互平分的四邊形是平行四邊形,故錯(cuò)誤;
D、對(duì)角線相等且相互平分的四邊形是矩形,正確;
故選D.
點(diǎn)睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關(guān)鍵是熟記四邊形的判定定理.
8、C
【解析】
本題主要是特殊角的三角函數(shù)值的問(wèn)題,求解本題的關(guān)鍵是熟悉特殊角的三角函數(shù)值.
【詳解】
cos45°= .
故選:C.
【點(diǎn)睛】
本題考查特殊角的三角函數(shù)值.
9、C
【解析】
從正面看幾何體,確定出主視圖即可.
【詳解】
解:幾何體的主視圖為
故選C.
【點(diǎn)睛】
本題考查了簡(jiǎn)單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.
10、C
【解析】
由向量的方向直接判斷即可.
【詳解】
解:為單位向量,=,所以與方向相反,所以C錯(cuò)誤,
故選C.
【點(diǎn)睛】
本題考查了向量的方向,是基礎(chǔ)題,較簡(jiǎn)單.
11、B
【解析】
.
故選B.
點(diǎn)睛:在把一個(gè)絕對(duì)值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時(shí),我們要注意兩點(diǎn):①必須滿(mǎn)足:;②比原來(lái)的數(shù)的整數(shù)位數(shù)少1(也可以通過(guò)小數(shù)點(diǎn)移位來(lái)確定).
12、D
【解析】
根據(jù)“左加右減、上加下減”的原則,
將拋物線向左平移1個(gè)單位所得直線解析式為:;
再向下平移3個(gè)單位為:.故選D.
二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)
13、1
【解析】
試題解析:如圖,
∵a∥b,∠3=40°,
∴∠4=∠3=40°.
∵∠1=∠2+∠4=110°,
∴∠2=110°-∠4=110°-40°=1°.
故答案為:1.
14、1.
【解析】
由CD⊥AB,根據(jù)垂徑定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理計(jì)算出OD,則通過(guò)CD=OC?OD求出CD.
【詳解】
解:∵CD⊥AB,AB=16,
∴AD=DB=8,
在Rt△OAD中,AB=16m,半徑OA=10m,
∴OD==6,
∴CD=OC﹣OD=10﹣6=1(m).
故答案為1.
【點(diǎn)睛】
本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的?。部疾榱饲芯€的性質(zhì)定理以及勾股定理.
15、2:1.
【解析】
過(guò)點(diǎn)O作OE⊥AB于點(diǎn)E,延長(zhǎng)EO交CD于點(diǎn)F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據(jù)相似三角形對(duì)應(yīng)高的比等于相似比可得,由此即可求得答案.
【詳解】
如圖,過(guò)點(diǎn)O作OE⊥AB于點(diǎn)E,延長(zhǎng)EO交CD于點(diǎn)F,
∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,
∵AB//CD,∴△AOB∽△DOC,
又∵OE⊥AB,OF⊥CD,練習(xí)本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,
∴=,
故答案為:2:1.
【點(diǎn)睛】
本題考查了相似三角形的的判定與性質(zhì),熟練掌握相似三角形對(duì)應(yīng)高的比等于相似比是解本題的關(guān)鍵.
16、-5
【解析】
兩邊同時(shí)乘以(x+3)(x-3),得
6-x2+9=-x2-3x,
解得:x=-5,
檢驗(yàn):當(dāng)x=-5時(shí),(x+3)(x-3)≠0,所以x=-5是分式方程的解,
故答案為:-5.
【點(diǎn)睛】本題考查了解分式方程,解題的關(guān)鍵是方程兩邊同時(shí)乘以最簡(jiǎn)公分母,切記要進(jìn)行檢驗(yàn).
17、
【解析】
設(shè)該船行駛的速度為x海里/時(shí),由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.
【詳解】
如圖所示:
該船行駛的速度為x海里/時(shí),
3小時(shí)后到達(dá)小島的北偏西45°的C處,
由題意得:AB=80海里,BC=3x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°?60°=30°,
∴AQ=AB=40,BQ=AQ=40,
在直角三角形AQC中,∠CAQ=45°,
∴CQ=AQ=40,
∴BC=40+40=3x,
解得:x=.
即該船行駛的速度為海里/時(shí);
故答案為:.
【點(diǎn)睛】
本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.
18、1
【解析】
如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據(jù)相似三角形的性質(zhì)就可以求出結(jié)論.
【詳解】
在Rt△ABC中,由勾股定理.得
AB==10,
∵DE⊥AB,
∴∠AED=∠C=90°.
∵∠A=∠A,
∴△AED∽△ACB,
∴,
∴,
∴AD=1.
故答案為1
【點(diǎn)睛】
本題考查了勾股定理的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)求出△AED∽△ACB是解答本題的關(guān)鍵.
三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
19、 (1)yB=-0.2x2+1.6x(2)一次函數(shù),yA=0.4x(3)該企業(yè)投資A產(chǎn)品12萬(wàn)元,投資B產(chǎn)品3萬(wàn)元,可獲得最大利潤(rùn)7.8萬(wàn)元
【解析】
(1)用待定系數(shù)法將坐標(biāo)(2,2.4)(4,3.2)代入函數(shù)關(guān)系式y(tǒng)B=ax2+bx求解即可;
(2)根據(jù)表格中對(duì)應(yīng)的關(guān)系可以確定為一次函數(shù),通過(guò)待定系數(shù)法求得函數(shù)表達(dá)式;
(3)根據(jù)等量關(guān)系“總利潤(rùn)=投資A產(chǎn)品所獲利潤(rùn)+投資B產(chǎn)品所獲利潤(rùn)”列出函數(shù)關(guān)系式求得最大值
【詳解】
解:(1)yB=-0.2x2+1.6x,
(2)一次函數(shù),yA=0.4x,
(3)設(shè)投資B產(chǎn)品x萬(wàn)元,投資A產(chǎn)品(15-x)萬(wàn)元,投資兩種產(chǎn)品共獲利W萬(wàn)元, 則W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴當(dāng)x=3時(shí),W最大值=7.8,
答:該企業(yè)投資A產(chǎn)品12萬(wàn)元,投資B產(chǎn)品3萬(wàn)元,可獲得最大利潤(rùn)7.8萬(wàn)元.
20、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤
【解析】
(1)直接利用線段AB的“等長(zhǎng)點(diǎn)”的條件判斷;
(2)分兩種情況討論,利用對(duì)稱(chēng)性和垂直的性質(zhì)即可求出m,n;
(3)先判斷出直線y=kx+3與圓A,B相切時(shí),如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.
【詳解】
(1)∵A(0,3),B(,0),
∴AB=2,
∵點(diǎn)C1(﹣2,3+2),
∴AC1==2,
∴AC1=AB,
∴C1是線段AB的“等長(zhǎng)點(diǎn)”,
∵點(diǎn)C2(0,﹣2),
∴AC2=5,BC2==,
∴AC2≠AB,BC2≠AB,
∴C2不是線段AB的“等長(zhǎng)點(diǎn)”,
∵點(diǎn)C3(3+,﹣),
∴BC3==2,
∴BC3=AB,
∴C3是線段AB的“等長(zhǎng)點(diǎn)”;
故答案為C1,C3;
(2)如圖1,
在Rt△AOB中,OA=3,OB=,
∴AB=2,tan∠OAB==,
∴∠OAB=30°,
當(dāng)點(diǎn)D在y軸左側(cè)時(shí),
∵∠DAB=60°,
∴∠DAO=∠DAB﹣∠BAO=30°,
∵點(diǎn)D(m,n)是線段AB的“等長(zhǎng)點(diǎn)”,
∴AD=AB,
∴D(﹣,0),
∴m=,n=0,
當(dāng)點(diǎn)D在y軸右側(cè)時(shí),
∵∠DAB=60°,
∴∠DAO=∠BAO+∠DAB=90°,
∴n=3,
∵點(diǎn)D(m,n)是線段AB的“等長(zhǎng)點(diǎn)”,
∴AD=AB=2,
∴m=2;
∴D(,3)
(3)如圖2,
∵直線y=kx+3k=k(x+3),
∴直線y=kx+3k恒過(guò)一點(diǎn)P(﹣3,0),
∴在Rt△AOP中,OA=3,OP=3,
∴∠APO=30°,
∴∠PAO=60°,
∴∠BAP=90°,
當(dāng)PF與⊙B相切時(shí)交y軸于F,
∴PA切⊙B于A,
∴點(diǎn)F就是直線y=kx+3k與⊙B的切點(diǎn),
∴F(0,﹣3),
∴3k=﹣3,
∴k=﹣,
當(dāng)直線y=kx+3k與⊙A相切時(shí)交y軸于G切點(diǎn)為E,
∴∠AEG=∠OPG=90°,
∴△AEG∽△POG,
∴,
∴=,解得:k=或k=(舍去)
∵直線y=kx+3k上至少存在一個(gè)線段AB的“等長(zhǎng)點(diǎn)”,
∴﹣≤k≤,
【點(diǎn)睛】
此題是一次函數(shù)綜合題,主要考查了新定義,銳角三角函數(shù),直角三角形的性質(zhì),等腰三角形的性質(zhì),對(duì)稱(chēng)性,解(1)的關(guān)鍵是理解新定義,解(2)的關(guān)鍵是畫(huà)出圖形,解(3)的關(guān)鍵是判斷出直線和圓A,B相切時(shí)是分界點(diǎn).
21、2
【解析】
試題分析:首先根據(jù)單項(xiàng)式乘以多項(xiàng)式的法則以及完全平方公式將括號(hào)去掉,然后再進(jìn)行合并同類(lèi)項(xiàng),最后將a的值代入化簡(jiǎn)后的式子得出答案.
試題解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,
當(dāng)a=1時(shí),原式=14+16﹣1﹣1=2.
22、(1)證明見(jiàn)解析;(2);3.
【解析】
試題分析:(1)連接OD、OE、ED.先證明△AOE是等邊三角形,得到AE=AO=0D,則四邊形AODE是平行四邊形,然后由OA=OD證明四邊形AODE是菱形;
(2)連接OD、DF.先由△OBD∽△ABC,求出⊙O的半徑,然后證明△ADC∽△AFD,得出AD2=AC?AF,進(jìn)而求出AD.
試題解析:(1)證明:如圖1,連接OD、OE、ED.
∵BC與⊙O相切于一點(diǎn)D,
∴OD⊥BC,
∴∠ODB=90°=∠C,
∴OD∥AC,
∵∠B=30°,
∴∠A=60°,
∵OA=OE,
∴△AOE是等邊三角形,
∴AE=AO=0D,
∴四邊形AODE是平行四邊形,
∵OA=OD,
∴四邊形AODE是菱形.
(2)解:設(shè)⊙O的半徑為r.
∵OD∥AC,
∴△OBD∽△ABC.
∴,即8r=6(8﹣r).
解得r=,
∴⊙O的半徑為.
如圖2,連接OD、DF.
∵OD∥AC,
∴∠DAC=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAC=∠DAO,
∵AF是⊙O的直徑,
∴∠ADF=90°=∠C,
∴△ADC∽△AFD,
∴,
∴AD2=AC?AF,
∵AC=6,AF=,
∴AD2=×6=45,
∴AD==3.
點(diǎn)評(píng):本題考查了切線的性質(zhì)、圓周角定理、等邊三角形的判定與性質(zhì)、菱形的判定和性質(zhì)以及相似三角形的判定和性質(zhì),是一個(gè)綜合題,難度中等.熟練掌握相關(guān)圖形的性質(zhì)及判定是解本題的關(guān)鍵.
考點(diǎn):切線的性質(zhì);菱形的判定與性質(zhì);相似三角形的判定與性質(zhì).
23、(1)A種品牌套裝每套進(jìn)價(jià)為1元,B種品牌套裝每套進(jìn)價(jià)為7.5元;(2)最少購(gòu)進(jìn)A品牌工具套裝2套.
【解析】
試題分析:(1)利用兩種套裝的套數(shù)作為等量關(guān)系列方程求解.(2)利用總獲利大于等于120,解不等式.
試題解析:
(1)解:設(shè)B種品牌套裝每套進(jìn)價(jià)為x元,則A種品牌套裝每套進(jìn)價(jià)為(x+2.5)元.
根據(jù)題意得:=2×,
解得:x=7.5,
經(jīng)檢驗(yàn),x=7.5為分式方程的解,
∴x+2.5=1.
答:A種品牌套裝每套進(jìn)價(jià)為1元,B種品牌套裝每套進(jìn)價(jià)為7.5元.
(2)解:設(shè)購(gòu)進(jìn)A品牌工具套裝a套,則購(gòu)進(jìn)B品牌工具套裝(2a+4)套,
根據(jù)題意得:(13﹣1)a+(9.5﹣7.5)(2a+4)>120,
解得:a>16,
∵a為正整數(shù),
∴a取最小值2.
答:最少購(gòu)進(jìn)A品牌工具套裝2套.
點(diǎn)睛:分式方程應(yīng)用題:一設(shè),一般題里有兩個(gè)有關(guān)聯(lián)的未知量,先設(shè)出一個(gè)未知量,并找出兩個(gè)未知量的聯(lián)系;二列,找等量關(guān)系,列方程,這個(gè)時(shí)候應(yīng)該注意的是和差分倍關(guān)系:三解,正確解分式方程;四驗(yàn),應(yīng)用題要雙檢驗(yàn);五答,應(yīng)用題要寫(xiě)答.
24、(1)見(jiàn)解析;(2)
【解析】
(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質(zhì)及角的和差關(guān)系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點(diǎn).設(shè),則,.根據(jù)兩組對(duì)邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長(zhǎng)度,利用銳角三角函數(shù)的定義即可求出的值.
【詳解】
(1)連接,.
∵是的直徑,弦于點(diǎn),
∴,.
∵,
∴.
∴為等邊三角形.
∴,∠DAE=∠EAC=30°,
∵OA=OC,
∴∠OAC=∠OCA=30°,
∴∠1=∠DCA-∠OCA=30°,
∵,
∴∠DCG=∠CDA=∠60°,
∴∠OCG=∠DCG+∠1=60°+30°=90°,
∴.
∴與相切.
(2)連接EF,作于點(diǎn).
設(shè),則,.
∵與相切,
∴.
又∵,
∴.
又∵,
∴四邊形為平行四邊形.
∵,
∴四邊形為菱形.
∴,.
由(1)得,
∴,.
∴.
∵在中,,
∴.
【點(diǎn)睛】
本題考查圓的綜合問(wèn)題,涉及切線的判定與性質(zhì),菱形的判定與性質(zhì),等邊三角形的性質(zhì)及銳角三角函數(shù),考查學(xué)生綜合運(yùn)用知識(shí)的能力,熟練掌握相關(guān)性質(zhì)是解題關(guān)鍵.
25、(1)①12,3. ②詳見(jiàn)解析.(2).
【解析】
分析:(1)①根據(jù)題意和表中的數(shù)據(jù)可以求得a的值;②由表格中的數(shù)據(jù)可以將頻數(shù)分布表補(bǔ)充完整;
(2)根據(jù)表格中的數(shù)據(jù)和測(cè)試成績(jī)不低于80分為優(yōu)秀,可以求得優(yōu)秀率;
(3)根據(jù)題意可以求得所有的可能性,從而可以得到小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
詳解:(1)①a=50﹣(6+8+14+10)=12,
中位數(shù)為第25、26個(gè)數(shù)的平均數(shù),而第25、26個(gè)數(shù)均落在第3組內(nèi),
所以中位數(shù)落在第3組,
故答案為12,3;
②如圖,
(2)×100%=44%,
答:本次測(cè)試的優(yōu)秀率是44%;
(3)設(shè)小明和小強(qiáng)分別為A、B,另外兩名學(xué)生為:C、D,
則所有的可能性為:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
所以小明和小強(qiáng)分在一起的概率為:.
點(diǎn)睛:本題考查列舉法求概率、頻數(shù)分布表、頻數(shù)分布直方圖、中位數(shù),解題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,可以將所有的可能性都寫(xiě)出來(lái),求出相應(yīng)的概率.
26、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點(diǎn)Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).
【解析】
分析: (1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).
(2)①以AD為直徑的圓經(jīng)過(guò)點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來(lái),在得出AC、CD、AD的長(zhǎng)度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.
②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說(shuō)明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.
③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD 2=2QG 2=2QB 2,設(shè)出點(diǎn)Q的坐標(biāo),然后用Q點(diǎn)縱坐標(biāo)表達(dá)出QD、QB的長(zhǎng),根據(jù)上面的等式列方程即可求出點(diǎn)Q的坐標(biāo).
詳解:
(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
∴D(1,﹣4a).
(2)①∵以AD為直徑的圓經(jīng)過(guò)點(diǎn)C,
∴△ACD為直角三角形,且∠ACD=90°;
由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:
AC2=9a2+9、CD2=a2+1、AD2=16a2+4
由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
化簡(jiǎn),得:a2=1,由a<0,得:a=﹣1,
②∵a=﹣1,
∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).
∵將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,
∴PM∥x軸,且PM=OB=1;
設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;
∵BF=2MF,
∴x+1=2(﹣x2+2x+3),化簡(jiǎn),得:2x2﹣3x﹣5=0
解得:x1=﹣1(舍去)、x2=.
∴M(,)、N(,).
③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,過(guò)C作CH⊥QD于H,如下圖:
∵C(0,3)、D(1,4),
∴CH=DH=1,即△CHD是等腰直角三角形,
∴△QGD也是等腰直角三角形,即:QD2=2QG2;
設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;
得:(4﹣b)2=2(b2+4),
化簡(jiǎn),得:b2+8b﹣8=0,解得:b=﹣4±2;
即點(diǎn)Q的坐標(biāo)為(1,)或(1,).
點(diǎn)睛: 此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識(shí)點(diǎn);后兩個(gè)小題較難,最后一題中,通過(guò)構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.
27、(1)連接A、B兩市公路的路程為80km,貨車(chē)由B市到達(dá)A市所需時(shí)間為h;(2)y=﹣80x+60(0≤x≤);(3)機(jī)場(chǎng)大巴與貨車(chē)相遇地到機(jī)場(chǎng)C的路程為km.
【解析】
(1)根據(jù)可求出連接A、B兩市公路的路程,再根據(jù)貨車(chē)h行駛20km可求出貨車(chē)行駛60km所需時(shí)間;
(2)根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式;
(3)利用待定系數(shù)法求出線段ED對(duì)應(yīng)的函數(shù)表達(dá)式,聯(lián)立兩函數(shù)表達(dá)式成方程組,通過(guò)解方程組可求出機(jī)場(chǎng)大巴與貨車(chē)相遇地到機(jī)場(chǎng)C的路程.
【詳解】
解:(1)60+20=80(km),
(h)
∴連接A.?B兩市公路的路程為80km,貨車(chē)由B市到達(dá)A市所需時(shí)間為h.
(2)設(shè)所求函數(shù)表達(dá)式為y=kx+b(k≠0),
將點(diǎn)(0,60)、代入y=kx+b,
得: 解得:
∴機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式為
(3)設(shè)線段ED對(duì)應(yīng)的函數(shù)表達(dá)式為y=mx+n(m≠0)
將點(diǎn)代入y=mx+n,
得: 解得:
∴線段ED對(duì)應(yīng)的函數(shù)表達(dá)式為
解方程組得
∴機(jī)場(chǎng)大巴與貨車(chē)相遇地到機(jī)場(chǎng)C的路程為km.
【點(diǎn)睛】
本題考查一次函數(shù)的應(yīng)用,掌握待定系數(shù)法求函數(shù)關(guān)系式是解題的關(guān)鍵,本題屬于中檔題,難度不大,但過(guò)程比較繁瑣,因此再解決該題是一定要細(xì)心.
這是一份四川省金堂縣金龍中學(xué)北師版八下數(shù)學(xué)期末數(shù)學(xué)模擬試卷 (含解析),共25頁(yè)。試卷主要包含了若a<b,則下列結(jié)論成立的是,下列各式分解因式正確的是,如圖,已知,如圖,已知A,B的坐標(biāo)分別為等內(nèi)容,歡迎下載使用。
這是一份2022-2023學(xué)年成都市金堂縣金龍中學(xué)數(shù)學(xué)七下期末復(fù)習(xí)檢測(cè)模擬試題含答案,共7頁(yè)。試卷主要包含了考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào),下列代數(shù)式變形正確的是等內(nèi)容,歡迎下載使用。
這是一份成都市金堂縣金龍中學(xué)2022年十校聯(lián)考最后數(shù)學(xué)試題含解析,共21頁(yè)。試卷主要包含了考生必須保證答題卡的整潔,a的倒數(shù)是3,則a的值是,某商品的進(jìn)價(jià)為每件元,下列說(shuō)法不正確的是等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功