
?2021-2022中考數(shù)學模擬試卷
注意事項:
1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。
2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。
3.考試結(jié)束后,將本試卷和答題卡一并交回。
一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)
1.圓錐的底面半徑為2,母線長為4,則它的側(cè)面積為( ?。?br />
A.8π B.16π? C.4π D.4π
2.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有( )個.
A.2 B.3 C.4 D.5
3.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為( ?。?br />
A.2π B.4π C.5π D.6π
4.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值( ?。?br />
A.總不小于1 B.總不小于11
C.可為任何實數(shù) D.可能為負數(shù)
5.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是( )
A. B. C. D.
6.若正六邊形的邊長為6,則其外接圓半徑為( )
A.3 B.3 C.3 D.6
7.據(jù)統(tǒng)計,第22屆冬季奧林匹克運動會的電視轉(zhuǎn)播時間長達88000小時,社交網(wǎng)站和國際奧委會官方網(wǎng)站也創(chuàng)下冬奧會收看率紀錄.用科學記數(shù)法表示88000為( ?。?br />
A.0.88×105 B.8.8×104 C.8.8×105 D.8.8×106
8.下面說法正確的個數(shù)有( )
①如果三角形三個內(nèi)角的比是1∶2∶3,那么這個三角形是直角三角形;
②如果三角形的一個外角等于與它相鄰的一個內(nèi)角,則這么三角形是直角三角形;
③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;
④如果∠A=∠B=∠C,那么△ABC是直角三角形;
⑤若三角形的一個內(nèi)角等于另兩個內(nèi)角之差,那么這個三角形是直角三角形;
⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.
A.3個 B.4個 C.5個 D.6個
9.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是( )
A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根
10.在中國集郵總公司設(shè)計的2017年紀特郵票首日紀念截圖案中,可以看作中心對稱圖形的是( ?。?br />
A.千里江山圖
B.京津冀協(xié)同發(fā)展
C.內(nèi)蒙古自治區(qū)成立七十周年
D.河北雄安新區(qū)建立紀念
11.如圖,中,E是BC的中點,設(shè),那么向量用向量表示為( )
A. B. C. D.
12.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則( ?。?br />
A.DE=EB B.DE=EB C.DE=DO D.DE=OB
二、填空題:(本大題共6個小題,每小題4分,共24分.)
13.若x=-1, 則x2+2x+1=__________.
14.如圖,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_________.
15.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.
16.已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.
17.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC.若AD=6,BD=2,DE=3,則BC=______.
18.已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是_____.
三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
19.(6分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結(jié)CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.
(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為 (填“真”或“假”)命題,并說明理由;
(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;
(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.
20.(6分)先化簡,再求值:,其中滿足.
21.(6分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.
問題出現(xiàn):(1)當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為 ??;
題探究:(2)①當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為 ??;
②當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;
問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM= ?。?br />
22.(8分)如圖,直線AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度數(shù).
23.(8分)在平面直角坐標系中,O為坐標原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.
(Ⅰ)如圖①,求OD的長及的值;
(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.
①在旋轉(zhuǎn)過程中,當∠BAG′=90°時,求α的大??;
②在旋轉(zhuǎn)過程中,求AF′的長取最大值時,點F′的坐標及此時α的大小(直接寫出結(jié)果即可).
24.(10分)甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調(diào)了多少參加歌詠比賽?
25.(10分)如圖,已知點D、E為△ABC的邊BC上兩點.AD=AE,BD=CE,為了判斷∠B與∠C的大小關(guān)系,請你填空完成下面的推理過程,并在空白括號內(nèi)注明推理的依據(jù).
解:過點A作AH⊥BC,垂足為H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性質(zhì))
即:BH=
又∵ (所作)
∴AH為線段 的垂直平分線
∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等)
∴ ?。ǖ冗厡Φ冉牵?br />
26.(12分)綜合與實踐﹣﹣﹣折疊中的數(shù)學
在學習完特殊的平行四邊形之后,某學習小組針對矩形中的折疊問題進行了研究.
問題背景:
在矩形ABCD中,點E、F分別是BC、AD 上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.
猜想與證明:
(1)如圖1,當EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結(jié)論;
操作與畫圖:
(2)當點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標注相應(yīng)的字母);
操作與探究:
(3)如圖3,當點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN 并延長MN交EF于點O.
求證:MO⊥EF 且MO平分EF;
(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為 ?。?br />
27.(12分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,
n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線過點E.
(1) 若m=-8,n =4,直接寫出E、F的坐標;
(2) 若直線EF的解析式為,求k的值;
(3) 若雙曲線過EF的中點,直接寫出tan∠EFO的值.
參考答案
一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)
1、A
【解析】
解:底面半徑為2,底面周長=4π,側(cè)面積=×4π×4=8π,故選A.
2、C
【解析】
根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.
【詳解】
解:∵AF是∠BAC的平分線,
∴∠GAH=∠BAH,
∵BH⊥AF,
∴∠AHG=∠AHB=90°,
在△AHG和△AHB中
,
∴△AHG≌△AHB(ASA),
∴GH=BH,
∴AF是線段BG的垂直平分線,
∴EG=EB,F(xiàn)G=FB,
∵四邊形ABCD是正方形,
∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,
∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,
∴∠BEF=∠BFE,
∴EB=FB,
∴EG=EB=FB=FG,
∴四邊形BEGF是菱形;②正確;
設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,
∵四邊形BEGF是菱形,
∴GF∥OB,
∴∠CGF=∠COB=90°,
∴∠GFC=∠GCF=45°,
∴CG=GF=b,∠CGF=90°,
∴CF=GF=BF,
∵四邊形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°,
∵BH⊥AF,
∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
∴∠OAE=∠OBG,
在△OAE和△OBG中
,
∴△OAE≌△OBG(ASA),①正確;
∴OG=OE=a﹣b,
∴△GOE是等腰直角三角形,
∴GE=OG,
∴b=(a﹣b),
整理得a=b,
∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,
∵四邊形ABCD是正方形,
∴PC∥AB,
∴===1+,
∵△OAE≌△OBG,
∴AE=BG,
∴=1+,
∴==1﹣,④正確;
∵∠OAE=∠OBG,∠CAB=∠DBC=45°,
∴∠EAB=∠GBC,
在△EAB和△GBC中
,
∴△EAB≌△GBC(ASA),
∴BE=CG,③正確;
在△FAB和△PBC中
,
∴△FAB≌△PBC(ASA),
∴BF=CP,
∴====,⑤錯誤;
綜上所述,正確的有4個,
故選:C.
【點睛】
本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學生對有關(guān)于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.
3、B
【解析】
連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.
【詳解】
連接OA、OC,
∵∠ADC=60°,
∴∠AOC=2∠ADC=120°,
則劣弧AC的長為: =4π.
故選B.
【點睛】
本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式 .
4、A
【解析】
利用配方法,根據(jù)非負數(shù)的性質(zhì)即可解決問題;
【詳解】
解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故選:A.
【點睛】
本題考查配方法的應(yīng)用,非負數(shù)的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握配方法.
5、D
【解析】
根據(jù)軸對稱圖形的概念求解.
【詳解】
解:根據(jù)軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.
故選D.
【點睛】
本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形
6、D
【解析】
連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.
【詳解】
如圖為正六邊形的外接圓,ABCDEF是正六邊形,
∴∠AOF=10°, ∵OA=OF, ∴△AOF是等邊三角形,∴OA=AF=1.
所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.
故選D.
【點睛】
本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.
7、B
【解析】
試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值. 在確定n的值時,看該數(shù)是大于或等于1還是小于1. 當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).因此,
∵88000一共5位,∴88000=8.88×104. 故選B.
考點:科學記數(shù)法.
8、C
【解析】
試題分析:①∵三角形三個內(nèi)角的比是1:2:3,
∴設(shè)三角形的三個內(nèi)角分別為x,2x,3x,
∴x+2x+3x=180°,解得x=30°,
∴3x=3×30°=90°,
∴此三角形是直角三角形,故本小題正確;
②∵三角形的一個外角與它相鄰的一個內(nèi)角的和是180°,
∴若三角形的一個外角等于與它相鄰的一個內(nèi)角,則此三角形是直角三角形,故本小題正確;
③∵直角三角形的三條高的交點恰好是三角形的一個頂點,
∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;
④∵∠A=∠B=∠C,
∴設(shè)∠A=∠B=x,則∠C=2x,
∴x+x+2x=180°,解得x=45°,
∴2x=2×45°=90°,
∴此三角形是直角三角形,故本小題正確;
⑤∵三角形的一個外角等于與它不相鄰的兩內(nèi)角之和,三角形的一個內(nèi)角等于另兩個內(nèi)角之差,
∴三角形一個內(nèi)角也等于另外兩個內(nèi)角的和,
∴這個三角形中有一個內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補,
∴有一個內(nèi)角一定是90°,故這個三角形是直角三角形,故本小題正確;
⑥∵三角形的一個外角等于與它不相鄰的兩內(nèi)角之和,又一個內(nèi)角也等于另外兩個內(nèi)角的和,
由此可知這個三角形中有一個內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補,
∴有一個內(nèi)角一定是90°,故這個三角形是直角三角形,故本小題正確.
故選D.
考點:1.三角形內(nèi)角和定理;2.三角形的外角性質(zhì).
9、C
【解析】
解:由題意可知4的算術(shù)平方根是2,4的立方根是 ∠DMP=∠ACP,則這種情況不存在,舍去;
第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,
∴△PAC∽△PMB;
∴
∴BM垂直平分PC則BC=BP= ;
∴
∴綜上所述,或或;
【點睛】
本題考查了信息遷移,三角形外角的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質(zhì)及分類討論的數(shù)學思想,理解“好點”的定義并能進行分類討論是解答本題的關(guān)鍵.
20、1
【解析】
試題分析:原式第一項括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分后,兩項通分并利用同分母分式的減法法則計算得到最簡結(jié)果,已知方程變形后代入計算即可求出值.
試題解析:
原式=
∵x2?x?1=0,∴x2=x+1,
則原式=1.
21、 (1) DM=AD+AP ;(2) ①DM=AD﹣AP ; ②DM=AP﹣AD ;(3) 3﹣或﹣1.
【解析】
(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;
(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;
②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進而解答即可;
(3)分兩種情況利用勾股定理和三角函數(shù)解答即可.
【詳解】
(1)DM=AD+AP,理由如下:
∵正方形ABCD,
∴DC=AB,∠DAP=90°,
∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,
∴DP=PE,∠PNE=90°,∠DPE=90°,
∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
∴∠DAP=∠EPN,
在△ADP與△NPE中,
,
∴△ADP≌△NPE(AAS),
∴AD=PN,AP=EN,
∴AN=DM=AP+PN=AD+AP;
(2)①DM=AD﹣AP,理由如下:
∵正方形ABCD,
∴DC=AB,∠DAP=90°,
∵將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,
∴DP=PE,∠PNE=90°,∠DPE=90°,
∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
∴∠DAP=∠EPN,
在△ADP與△NPE中,
,
∴△ADP≌△NPE(AAS),
∴AD=PN,AP=EN,
∴AN=DM=PN﹣AP=AD﹣AP;
②DM=AP﹣AD,理由如下:
∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,
∴∠DAP=∠PEN,
又∵∠A=∠PNE=90°,DP=PE,
∴△DAP≌△PEN,
∴AD=PN,
∴DM=AN=AP﹣PN=AP﹣AD;
(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;
①如圖2:∵∠DEM=15°,
∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
在Rt△PAD中AP=,AD==3,
∴DM=AD﹣AP=3﹣;
②如圖3:∵∠DEM=15°,
∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
在Rt△PAD中AP=,AD=AP?tan30°==1,
∴DM=AP﹣AD=﹣1.
故答案為;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.
【點睛】
此題是四邊形綜合題,主要考查了正方形的性質(zhì)全等三角形的判定和性質(zhì),分類討論的數(shù)學思想解決問題,判斷出△ADP≌△PFN是解本題的關(guān)鍵.
22、50°.
【解析】
試題分析:由平行線的性質(zhì)得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到結(jié)論.
解:∵AB∥CD,
∴∠ABC=∠1=65°,
∵BC平分∠ABD,
∴∠ABD=2∠ABC=130°,
∴∠BDE=180°﹣∠ABD=50°,
∴∠2=∠BDE=50°.
【點評】
本題考查了平行線的性質(zhì)和角平分線定義等知識點,解此題的關(guān)鍵是求出∠ABD的度數(shù),題目較好,難度不大.
23、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)
【解析】
(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,
BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,②當α=315°時,A、B、F′在一條直線上時,AF′的長最大.
【詳解】
(Ⅰ)如圖1中,
∵A(0,1),
∴OA=1,
∵四邊形OADC是正方形,
∴∠OAD=90°,AD=OA=1,
∴OD=AC==,
∴AB=BC=BD=BO=,
∵BD=DG,
∴BG=,
∴==.
(Ⅱ)①如圖2中,
∵∠BAG′=90°,BG′=2AB,
∴sin∠AG′B==,
∴∠AG′B=30°,
∴∠ABG′=60°,
∴∠DBG′=30°,
∴旋轉(zhuǎn)角α=30°,
根據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,
綜上所述,旋轉(zhuǎn)角α=30°或150°時,∠BAG′=90°.
②如圖3中,連接OF,
∵四邊形BE′F′G′是正方形的邊長為
∴BF′=2,
∴當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,
此時α=315°,F(xiàn)′(+,﹣)
【點睛】
本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關(guān)鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉(zhuǎn)變換的性質(zhì)以及特殊角的三角函數(shù)值的應(yīng)用.
24、從甲班抽調(diào)了35人,從乙班抽調(diào)了1人
【解析】
分析:首先設(shè)從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,根據(jù)題意列出一元一次方程,從而得出答案.
詳解:設(shè)從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,
由題意得,45﹣x=2[39﹣(x﹣1)], 解得:x=35, 則x﹣1=35﹣1=1.
答:從甲班抽調(diào)了35人,從乙班抽調(diào)了1人.
點睛:本題主要考查的是一元一次方程的應(yīng)用,屬于基礎(chǔ)題型.理解題目的含義,找出等量關(guān)系是解題的關(guān)鍵.
25、見解析
【解析】
根據(jù)等腰三角形的性質(zhì)與判定及線段垂直平分線的性質(zhì)解答即可.
【詳解】
過點A作AH⊥BC,垂足為H.
∵在△ADE中,AD=AE(已知),
AH⊥BC(所作),
∴DH=EH(等腰三角形底邊上的高也是底邊上的中線).
又∵BD=CE(已知),
∴BD+DH=CE+EH(等式的性質(zhì)),
即:BH=CH.
∵AH⊥BC(所作),
∴AH為線段BC的垂直平分線.
∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等).
∴∠B=∠C(等邊對等角).
【點睛】
本題考查等腰三角形的性質(zhì)及線段垂直平分線的性質(zhì),等腰三角形的底邊中線、底邊上的高、頂角的角平分線三線合一;線段垂直平分線上的點到線段兩端的距離相等;
26、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)
【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;
(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;
(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF 且MO平分EF;
(4)依據(jù)點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.
【詳解】
(1)△MEF是等腰三角形.
理由:∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠MFE=∠CEF,
由折疊可得,∠MEF=∠CEF,
∴∠MFE=∠MEF,
∴ME=MF,
∴△MEF是等腰三角形.
(2)折痕EF和折疊后的圖形如圖所示:
(3)如圖,
∵FD=BE,
由折疊可得,D'F=DF,
∴BE=D'F,
在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,
∴∠C'QN=∠APN,
∵∠C'QN=∠BQE,∠APN=∠D'PF,
∴∠BQE=∠D'PF,
在△BEQ和△D'FP中,
,
∴△BEQ≌△D'FP(AAS),
∴PF=QE,
∵四邊形ABCD是矩形,
∴AD=BC,
∴AD﹣FD=BC﹣BE,
∴AF=CE,
由折疊可得,C'E=EC,
∴AF=C'E,
∴AP=C'Q,
在△NC'Q和△NAP中,
,
∴△NC'P≌△NAP(AAS),
∴AN=C'N,
在Rt△MC'N和Rt△MAN中,
,
∴Rt△MC'N≌Rt△MAN(HL),
∴∠AMN=∠C'MN,
由折疊可得,∠C'EF=∠CEF,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠AFE=∠FEC,
∴∠C'EF=∠AFE,
∴ME=MF,
∴△MEF是等腰三角形,
∴MO⊥EF 且MO平分EF;
(4)在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:
故其長為L=.
故答案為.
【點睛】
此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質(zhì)、弧長計算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.
27、(1)E(-3,4)、F(-5,0);(2);(3).
【解析】
(1) 連接OE,BF,根據(jù)題意可知:設(shè)則根據(jù)勾股定理可得:即解得:即可求出點E的坐標,同理求出點F的坐標.
(2) 連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則,解得 , 根據(jù)菱形的性質(zhì)得OF=OE=BE=BF=令y=n,則,解得 則CE=,在Rt△COE中, 根據(jù)勾股定理列出方程,即可求出點E的坐標,即可求出k的值;
(3) 設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,根據(jù)勾股定理得到(-m-x)2+n2=x2,解得,求出點E()、F(),根據(jù)中點公式得到EF的中點為(),將E()、()代入中,得,得m2=2n2
即可求出tan∠EFO=.
【詳解】
解:(1)如圖:連接OE,BF,
E(-3,4)、F(-5,0)
(2) 連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE
可證:△BGE≌△OGF(ASA)
∴BE=OF
∴四邊形OEBF為菱形
令y=0,則,解得 ,∴OF=OE=BE=BF=
令y=n,則,解得 ∴CE=
在Rt△COE中,,
解得
∴E()
∴
(3) 設(shè)EB=EO=x,則CE=-m-x,
在Rt△COE中,(-m-x)2+n2=x2,解得
∴E()、F()
∴EF的中點為()
將E()、()代入中,得
,得m2=2n2
∴tan∠EFO=
【點睛】
考查矩形的折疊與性質(zhì),勾股定理,一次函數(shù)的圖象與性質(zhì),待定系數(shù)法求反比例函數(shù)解析式,銳角三角函數(shù)等,綜合性比較強,難度較大.
這是一份浙江省杭州市西湖區(qū)2021-2022學年中考猜題數(shù)學試卷含解析,共14頁。試卷主要包含了平面直角坐標系中,若點A,﹣的絕對值是等內(nèi)容,歡迎下載使用。
這是一份浙江省杭州北干2021-2022學年中考聯(lián)考數(shù)學試卷含解析,共20頁。試卷主要包含了考生必須保證答題卡的整潔,化簡?a5所得的結(jié)果是等內(nèi)容,歡迎下載使用。
這是一份2022年浙江省杭州市富陽區(qū)城區(qū)中考聯(lián)考數(shù)學試卷含解析,共17頁。試卷主要包含了下列計算正確的是等內(nèi)容,歡迎下載使用。
注冊成功