
一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)
1、(4分)關(guān)于頻率與概率有下列幾種說法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;③“某彩票中獎(jiǎng)的概率是1%”表示買10張?jiān)摲N彩票不可能中獎(jiǎng);④“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數(shù)的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近,正確的說法是( )
A.②④B.②③C.①④D.①③
2、(4分)下列根式不是最簡(jiǎn)二次根式的是( )
A.B.C.D.
3、(4分)下列等式從左到右的變形,屬于因式分解的是( )
A.B.
C.D.
4、(4分)為鼓勵(lì)業(yè)主珍惜每一滴水,某小區(qū)物業(yè)表?yè)P(yáng)了100個(gè)節(jié)約用水模范戶,5月份節(jié)約用水的情況如下表:那么,5月份這100戶平均節(jié)約用水的噸數(shù)為( )噸.
A.1B.1.1C.1.13D.1.2
5、(4分)如圖的中有一正方形,其中在上,在上,直線分別交于兩點(diǎn). 若,則的長(zhǎng)度為()
A.B.C.D.
6、(4分)一次數(shù)學(xué)測(cè)試中,小明所在小組的5個(gè)同學(xué)的成績(jī)(單位:分)分別是:90、91、88、90、97,則這組數(shù)據(jù)的中位數(shù)是( )
A.88 B.90 C.90.5 D.91
7、(4分)如圖,在矩形ABCD中,AB=6,BC=8,E是BC邊上一點(diǎn),將矩形沿AE折疊,點(diǎn)B落在點(diǎn)B'處,當(dāng)△B'EC是直角三角形時(shí),BE的長(zhǎng)為( )
A.2B.6C.3或6D.2或3或6
8、(4分)某校八年級(jí)(1)班全體學(xué)生進(jìn)行了第一次體育中考模擬測(cè)試,成績(jī)統(tǒng)計(jì)如下表:
根據(jù)上表中的信息判斷,下列結(jié)論中錯(cuò)誤的是( )
A.該班一共有42名同學(xué)
B.該班學(xué)生這次考試成績(jī)的眾數(shù)是8
C.該班學(xué)生這次考試成績(jī)的平均數(shù)是27
D.該班學(xué)生這次考試成績(jī)的中位數(shù)是27分
二、填空題(本大題共5個(gè)小題,每小題4分,共20分)
9、(4分)如圖,在平行四邊形ABCD中,對(duì)角線AC⊥BD,AC=10,BD=24 ,則AD=____________
10、(4分)某小組7名同學(xué)的英語(yǔ)口試成績(jī)(滿分30分)依次為,,,,,,,則這組數(shù)據(jù)的中位數(shù)是_______.
11、(4分)已知關(guān)于的一元二次方程有一個(gè)非零實(shí)數(shù)根,則的值為_____.
12、(4分)如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=8cm,EF=15cm,則邊AD的長(zhǎng)是______cm.
13、(4分)如圖,已知函數(shù)y=x+2b和y=ax+3的圖象交于點(diǎn)P,則不等式x+2b>ax+3的解集為________ .
三、解答題(本大題共5個(gè)小題,共48分)
14、(12分)在四個(gè)互不相等的正整數(shù)中,最大的數(shù)是8,中位數(shù)是4,求這四個(gè)數(shù)(按從小到大的順序排列)
15、(8分)在△BCF中,點(diǎn)D是邊CF上的一點(diǎn),過點(diǎn)D作AD∥BC,過點(diǎn)B作BA∥CD交AD于點(diǎn)A,點(diǎn)G是BC的中點(diǎn),點(diǎn)E是線段AD上一點(diǎn),且∠CDG=∠ABE=∠EBF.
(1)若∠F=60°,∠C=45°,BC=2,請(qǐng)求出AB的長(zhǎng);
(2)求證:CD=BF+DF.
16、(8分)如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地。兩車同時(shí)出發(fā),勻速行駛。圖2是客車、貨車離C站的路程y ,y (千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象。
(1)填空:A,B兩地相距___千米;貨車的速度是___千米/時(shí)。
(2)求兩小時(shí)后,貨車離C站的路程y 與行駛時(shí)間x之間的函數(shù)表達(dá)式;
(3)客、貨兩車何時(shí)距離不大于30km?
17、(10分)如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫出△A2B2C2;
(3)判斷以O(shè),A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)
18、(10分)計(jì)算:()0﹣|﹣2|﹣.
B卷(50分)
一、填空題(本大題共5個(gè)小題,每小題4分,共20分)
19、(4分)已知y與x+1成正比例,且x=1時(shí),y=2.則x=-1時(shí),y的值是______.
20、(4分)如圖,四邊形ABCD的對(duì)角線相交于點(diǎn)O,AO=CO,請(qǐng)?zhí)砑右粋€(gè)條件_________(只添一個(gè)即可),使四邊形ABCD是平行四邊形.
21、(4分)如圖,直線與軸、軸分別交于兩點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn)后得到,則點(diǎn)的坐標(biāo)為____.
22、(4分)在平面直角坐標(biāo)系中,已知坐標(biāo),將線段(第一象限)繞點(diǎn)(坐標(biāo)原點(diǎn))按逆時(shí)針方向旋轉(zhuǎn)后,得到線段,則點(diǎn)的坐標(biāo)為____.
23、(4分)如圖,在△ABC中,∠B=32°,∠BAC的平分線AD交BC于點(diǎn)D,若DE垂直平分AB,則∠C的度數(shù)為_____.
二、解答題(本大題共3個(gè)小題,共30分)
24、(8分)已知:中,AB=AC,點(diǎn) D、E 分別是線段 CB、AC 延長(zhǎng)線上的點(diǎn),滿足 ?ADE ? ?ABC .
(1)求證: AC ? CE ? BD ? DC ;
(2)若點(diǎn) D 在線段 AC 的垂直平分線上,求證:
25、(10分)如圖,直線y=3﹣2x與x軸,y軸分別相交于點(diǎn)A,B,點(diǎn)P(x,y)是線段AB上的任意一點(diǎn),并設(shè)△OAP的面積為S.
(1)S與x的函數(shù)解析式,求自變量x的取值范圍.
(2)如果△OAP的面積大于1,求自變量x的取值范圍.
26、(12分)如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上,點(diǎn) 坐標(biāo)為.
(1)畫出關(guān)于軸對(duì)稱的;
(2)畫出將繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得的;
(3)與能組成軸對(duì)稱圖形嗎?若能,請(qǐng)你畫出所有的對(duì)稱軸.
參考答案與詳細(xì)解析
一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)
1、C
【解析】
分別利用概率的意義分析得出答案.
【詳解】
①“明天下雨的概率是90%”表示明天下雨的可能性很大;正確;
②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;錯(cuò)誤;
③“某彩票中獎(jiǎng)的概率是1%”表示買10張?jiān)摲N彩票不可能中獎(jiǎng);錯(cuò)誤;
④“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數(shù)的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近,正確.
故選C.
此題主要考查了概率的意義,正確理解概率的意義是解題關(guān)鍵.
2、C
【解析】
【分析】判定一個(gè)二次根式是不是最簡(jiǎn)二次根式的方法,就是逐個(gè)檢查最簡(jiǎn)二次根式中的兩個(gè)條件(被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式)是否同時(shí)滿足,同時(shí)滿足的就是最簡(jiǎn)二次根式,否則就不是.
【詳解】A. ,是最簡(jiǎn)二次根式,不符合題意;
B. ,是最簡(jiǎn)二次根式,不符合題意;
C. ,不是最簡(jiǎn)二次根式,符合題意;
D. ,是最簡(jiǎn)二次根式,不符合題意,
故選C.
【點(diǎn)睛】本題考查了最簡(jiǎn)二次根式,規(guī)律總結(jié):滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式.
(1)被開方數(shù)不含分母;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.
3、C
【解析】
根據(jù)因式分解的意義,把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解分別進(jìn)行判斷,即可得出答案.
【詳解】
解:A、x2+2x-1≠(x-1)2,故本選項(xiàng)錯(cuò)誤;
B、右邊不是整式積的形式,不是因式分解,故本選項(xiàng)錯(cuò)誤;
C、符合因式分解的定義,故本選項(xiàng)正確;
D、右邊不是整式積的形式,不是因式分解,故本選項(xiàng)錯(cuò)誤.
故選:C.
本題考查多項(xiàng)式的因式分解,解題的關(guān)鍵是正確理解因式分解的意義.
4、C
【解析】
根據(jù)加權(quán)平均數(shù)的公式進(jìn)行計(jì)算即可得.
【詳解】
=1.13(噸),
所以這100戶平均節(jié)約用水的噸數(shù)為1.13噸,
故選C.
本題考查了加權(quán)平均數(shù)的計(jì)算,熟練掌握加權(quán)平均數(shù)的計(jì)算公式是解題的關(guān)鍵.
5、D
【解析】
由DE∥BC可得求出AE的長(zhǎng),由GF∥BN可得,將AE的長(zhǎng)代入可求得BN.
【詳解】
解:∵四邊形DEFG是正方形,
∴DE∥BC,GF∥BN,且DE=GF=EF=1,
∴△ADE∽△ACB,△AGF∽△ANB,
∴①,②,
由①可得,,解得:,
把代入②,得:,
解得:,
故選擇:D.
本題主要考查正方形的性質(zhì)及相似三角形的判定與性質(zhì),根據(jù)相似三角形的性質(zhì)得出AE的長(zhǎng)是解題的關(guān)鍵.
6、B
【解析】
先將題中的數(shù)據(jù)按照從小到大的順序排列,然后根據(jù)中位數(shù)的概念求解即可.
【詳解】
將小明所在小組的5個(gè)同學(xué)的成績(jī)重新排列為:88、90、90、91、97,
所以這組數(shù)據(jù)的中位數(shù)為90分,
故選B.
本題考查了中位數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).
7、C
【解析】
分以下兩種情況求解:①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),連接AC,先利用勾股定理計(jì)算出AC=10,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△B′EC為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=1,可計(jì)算出CB′=4,設(shè)BE=x,則EB′=x,CE=8﹣x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x.
②當(dāng)點(diǎn)B′落在AD邊上時(shí).此時(shí)四邊形ABEB′為正方形,求出BE的長(zhǎng)即可.
【詳解】
解:當(dāng)△B′EC為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如圖1所示.連結(jié)AC,
在Rt△ABC中,AB=1,BC=8,
∴AC==10,
∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
∴∠AB′E=∠B=90°,
當(dāng)△B′EC為直角三角形時(shí),得到∠EB′C=90°,
∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,如圖,
∴EB=EB′,AB=AB′=1,
∴CB′=10﹣1=4,
設(shè)BE=x,則EB′=x,CE=8﹣x,
在Rt△B′EC中,
∵EB′2+CB′2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如圖2所示.
此時(shí)ABEB′為正方形,
∴BE=AB=1.
綜上所述,BE的長(zhǎng)為3或1.
故選:C.
本題考查了折疊變換的性質(zhì)、直角三角形的性質(zhì)、矩形的性質(zhì),正方形的判定等知識(shí);熟練掌握折疊變換的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.
8、B
【解析】
根據(jù)眾數(shù),中位數(shù),平均數(shù)的定義解答.
【詳解】
解:該班共有6+5+5+8+7+7+4=42(人),
成績(jī)27分的有8人,人數(shù)最多,眾數(shù)為27;
該班學(xué)生這次考試成績(jī)的平均數(shù)是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
該班學(xué)生這次考試成績(jī)的中位數(shù)是第21名和第22名成績(jī)的平均數(shù)為27分,錯(cuò)誤的為B,
故選:B.
本題考查的是眾數(shù),中位數(shù),平均數(shù),熟練掌握眾數(shù),中位數(shù),平均數(shù)的定義是解題的關(guān)鍵.
二、填空題(本大題共5個(gè)小題,每小題4分,共20分)
9、13
【解析】
根據(jù)平行四邊形對(duì)角線互相平分先求出AO、OD的長(zhǎng),再根據(jù)AC⊥BD,在Rt△AOD中利用勾股定理進(jìn)行求解即可.
【詳解】
∵四邊形ABCD是平行四邊形,
∴OA=AC=×10=5,OD=BD=×24=12,
又∵AC⊥BD,∴∠AOD=90°,
∴AD==13,
故答案為:13.
本題考查了平行四邊形的性質(zhì),勾股定理,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.
10、1
【解析】
對(duì)于中位數(shù),先將數(shù)據(jù)按從小到大的順序排列,找出最中間的一個(gè)數(shù)(或最中間的兩個(gè)數(shù))即可.
【詳解】
這組數(shù)據(jù)從小到大排列順序?yàn)椋?3,25,25,1,27,29,30,中間一個(gè)數(shù)為1,所以這組數(shù)據(jù)的中位數(shù)為1.
故答案為:1
考核知識(shí)點(diǎn):中位數(shù).理解中位數(shù)的定義是關(guān)鍵.
11、1
【解析】
由于關(guān)于x的一元二次方程有一個(gè)非零根,那么代入方程中即可得到n2?mn+n=0,再將方程兩邊同時(shí)除以n即可求解.
【詳解】
解:∵關(guān)于x的一元二次方程有一個(gè)非零根,
∴n2?mn+n=0,
∵?n≠0,
∴n≠0,
方程兩邊同時(shí)除以n,得n?m+1=0,
∴m?n=1.
故答案為:1.
此題主要考查了一元二次方程的解,解題的關(guān)鍵是把已知方程的根直接代入方程進(jìn)而解決問題.
12、
【解析】
通過設(shè)各線段參數(shù),利用勾股定理和射影定理建立各參數(shù)的關(guān)系方程,即可解決.
【詳解】
解:設(shè)AH=e,AE=BE=f,BF=HD=m
在Rt△AHE中,e2+f2=82
在Rt△EFH中,f2=em
在Rt△EFB中,f2+m2=152
(e+m)2=e2+m2+2em=189
AD=e+m=3
故答案為3
本題考查了翻折的性質(zhì),利用直角三角形建立方程關(guān)系求解.
13、x>1
【解析】
解:由圖象可知:當(dāng)x>1時(shí),.故答案為:x>1.
三、解答題(本大題共5個(gè)小題,共48分)
14、這四個(gè)數(shù)為或 或.
【解析】
分析:根據(jù)中位數(shù)的定義得出第二個(gè)數(shù)和第三個(gè)數(shù)的和是8,再根據(jù)這四個(gè)數(shù)是不相等的正整數(shù),得出這兩個(gè)數(shù)是3、5或2、6,再根據(jù)這些數(shù)都是正整數(shù)得出第一個(gè)數(shù)是2或1,再把這四個(gè)數(shù)相加即可得出答案.
詳解:∵中位數(shù)是4,最大的數(shù)是8,
∴第二個(gè)數(shù)和第三個(gè)數(shù)的和是8,
∵這四個(gè)數(shù)是不相等的正整數(shù),
∴這兩個(gè)數(shù)是3、5或2、6,
∴這四個(gè)數(shù)是1,3,5,8或2,3,5,8或1,2,6,8,
故答案為:1, 2, 6, 8或1, 3, 5, 8 或2, 3, 5, 8.
點(diǎn)睛:此題考查了中位數(shù),掌握中位數(shù)的概念是本題的關(guān)鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).
15、(1)3+(2)見解析
【解析】
(1)過點(diǎn)E作EH⊥AB交AB于點(diǎn)H.分別求出AH,BH即可解決問題;
(2)連接EF,延長(zhǎng)FE交AB與點(diǎn)M.想辦法證明△BMF是等腰三角形即可解決問題;
【詳解】
解:(1)過點(diǎn)E作EH⊥AB交AB于點(diǎn)H.
∵AD∥BC,AB∥CD,
∴四邊形ABCD為平行四邊形.
∴AB=DC,∠DAB=∠DBC,
在△CGD和△AEB中,
,
∴△CGD≌△AEB,
∴∠DGC=∠BEA,
∴∠DGB=∠BED,
∵AD∥BC,
∴∠EDG+∠DGB=180°,
∴∠EDG+∠BED=180°
∴EB∥DG,
∴四邊形BGDE為平行四邊形,
∴BG=ED,
∵G是BD的中點(diǎn),
∴BG=BC,
∴BC=AD,ED=BG=AD,
∵BC=2,
∴AE=AD=,
在Rt△AEH中,∵∠EAB=45°,sin∠EAB=sin 45°=,
∴EH=,
∵∠EHA=90°,
∴△AHE為等腰直角三角形,
∴AH=EH=,
∵∠F=60°,
∴∠FBA=60°,
∵∠EBA=∠EBF,
∴∠EBA=30°,
在Rt△EHB中,tan∠EBH=tan 30°=,
∴HB=3,
∴AB=3+.
(2)連接EF,延長(zhǎng)FE交AB與點(diǎn)M.
∵∠A=∠EDF,AE=DE,∠AEM=∠DEF,
∴△AEM≌△DEF(ASA),
∴DF=AM,ME=EF,
又∵∠EBA=∠EBF,
∴△MBF是等腰三角形
∴BF=BM,
又∵AB=AM+BM,
∴CD=BF+DF.
本題考查全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形或全等三角形解決問題,屬于中考常考題型.
16、(1)420,30;(2)y=30x?60;(3)當(dāng)客車行駛的時(shí)間x, ?x?5時(shí),客、貨兩車相距不大于30千米.
【解析】
(1)根據(jù)圖象中的數(shù)據(jù)即可得到A,B兩地的距離;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)即可得到兩小時(shí)后,貨車離C站的路程y與行駛時(shí)間x之間的函數(shù)關(guān)系式;
(3)根據(jù)題意可以分相遇前和相遇后兩種情況進(jìn)行解答.
【詳解】
(1)由題意和圖象可得,
A,B兩地相距:360+60=420千米,
貨車的速度=60÷2=30千米/小時(shí),
故答案為:420,30;
(2)設(shè)兩小時(shí)后,貨車離C站的路程y與行駛時(shí)間x之間的函數(shù)關(guān)系式為y=kx+b,
由圖象可得,貨車的速度為:60÷2=30千米/時(shí),
則點(diǎn)P的橫坐標(biāo)為:2+360÷30=14,
∴點(diǎn)P的坐標(biāo)為(14,360),
,得 ,
即兩小時(shí)后,貨車離C站的路程y與行駛時(shí)間x之間的函數(shù)關(guān)系式為y=30x?60;
(3)由題意可得,
相遇前兩車相距150千米用的時(shí)間為:(420?30)÷(60÷2+360÷6)= (小時(shí)),
相遇后兩車相距150千米用的時(shí)間為:+(30×2)÷(60÷2+360÷6)=5(小時(shí)),
當(dāng)客車行駛的時(shí)間x, ?x?5時(shí),客、貨兩車相距不大于30千米。
此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于看懂圖中數(shù)據(jù)
17、(1)畫圖見解析;(2)畫圖見解析;(3)三角形的形狀為等腰直角三角形.
【解析】
【分析】(1)利用點(diǎn)平移的坐標(biāo)特征寫出A1、B1、C1的坐標(biāo),然后描點(diǎn)即可得到△A1B1C1為所作;
(2)利用網(wǎng)格特定和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對(duì)應(yīng)點(diǎn)A2、B2、C2,從而得到△A2B2C2,
(3)根據(jù)勾股定理逆定理解答即可.
【詳解】(1)如圖所示,△A1B1C1即為所求;
(2)如圖所示,△A2B2C2即為所求;
(3)三角形的形狀為等腰直角三角形,OB=OA1=,A1B==,
即OB2+OA12=A1B2,
所以三角形的形狀為等腰直角三角形.
【點(diǎn)睛】本題考查了作圖﹣旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.
18、-1-
【解析】
根據(jù)零指數(shù)冪、實(shí)數(shù)的絕對(duì)值和二次根式的性質(zhì)分別計(jì)算各項(xiàng),再合并即可.
【詳解】
解:原式=1+-2-2=-1-
本題考查了實(shí)數(shù)的混合運(yùn)算,熟知實(shí)數(shù)的混合運(yùn)算法則是求解的關(guān)鍵.
一、填空題(本大題共5個(gè)小題,每小題4分,共20分)
19、2
【解析】
設(shè)y=k(x+1),把x=1,y=2代入,求的k,確定x,y的關(guān)系式,然后把x=-1,代入解析式求對(duì)應(yīng)的函數(shù)值即可.
【詳解】
解:∵y與x+1成正比例,
∴設(shè)y=k(x+1),
∵x=1時(shí),y=2,
∴2=k×2,即k=1,
所以y=x+1.
則當(dāng)x=-1時(shí),y=-1+1=2.
故答案為2.
本題考查了正比例函數(shù)關(guān)系式為:y=kx(k≠2)),只需一組對(duì)應(yīng)量就可確定解析式.也考查了給定自變量會(huì)求對(duì)應(yīng)的函數(shù)值.
20、BO=DO.
【解析】
解:∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形.
故答案為BO=DO.
21、(7,3)
【解析】
先求出點(diǎn)A、B的坐標(biāo)得到OA、OB的長(zhǎng)度,過點(diǎn)作C⊥x軸于C,再據(jù)旋轉(zhuǎn)的性質(zhì)得到四邊形是矩形,求出AC、C即可得到答案.
【詳解】
令中y=0得x=3,令x=0得y=4,
∴A(3,0),B(0,4),
∴OA=3,OB=4,
由旋轉(zhuǎn)得,=OB=4, =OA=3,
如圖:過點(diǎn)作C⊥x軸于C,則四邊形是矩形,
∴AC==4,C==3,∠OC=90°,
∴OC=OA+AC=3+4=7,
∴點(diǎn)的坐標(biāo)是(7,3)
故答案為:(7,3).
此題考查一次函數(shù)與坐標(biāo)軸的交點(diǎn)坐標(biāo),矩形的判定及性質(zhì),旋轉(zhuǎn)的性質(zhì),利用矩形求對(duì)應(yīng)的線段的長(zhǎng)是解題的關(guān)鍵.
22、
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)求出點(diǎn)的坐標(biāo)即可.
【詳解】
如圖,將點(diǎn)B繞點(diǎn)(坐標(biāo)原點(diǎn))按逆時(shí)針方向旋轉(zhuǎn)后,得到點(diǎn)
點(diǎn)的坐標(biāo)為
故答案為:.
本題考查了坐標(biāo)點(diǎn)的旋轉(zhuǎn)問題,掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.
23、84°.
【解析】
根據(jù)線段垂直平分線的性質(zhì)得到DA=DB,根據(jù)等腰三角形的性質(zhì)得到∠DAB=∠B=32°,根據(jù)角平分線的定義、三角形內(nèi)角和定理計(jì)算即可.
【詳解】
解:∵DE垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=32°,
∵AD是∠BAC的平分線,
∴∠CAD=∠DAB=32°,
∴∠C=180°?32°×3=84°,
故答案為84°.
本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.
二、解答題(本大題共3個(gè)小題,共30分)
24、見解析
【解析】
證明,根據(jù)相似三角形的性質(zhì)即可證明.
證明,根據(jù)相似三角形的性質(zhì)即可證明.
【詳解】
中,AB=AC,
點(diǎn)D在線段AC的垂直平分線上,
考查相似三角形的判定與性質(zhì)以及線段的垂直平分線的性質(zhì),掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.
25、(1)S=;(2).
【解析】
(1)先求出點(diǎn)A的坐標(biāo),從而可得OA的長(zhǎng),繼而根據(jù)三角形的面積公式列式進(jìn)行計(jì)算即可得;
(2)根據(jù)△OAP的面積大于1,可得關(guān)于x的不等式,解不等式即可得答案.
【詳解】
(1)y=3﹣2x,當(dāng)y=0時(shí),0=3-2x,解得:x=,
所以A(,0),所以O(shè)A=,
∴S==,
∵點(diǎn)P(x,y)是線段AB上的任意一點(diǎn),點(diǎn)P與點(diǎn)A重合時(shí)不存在三角形,
∴0≤x<,
∴S=(0≤x<);
(2)由題意得:,
解得x<,
∴0≤x<.
本題考查了一次函數(shù)與坐標(biāo)軸的交點(diǎn),三角形的面積,不等式的運(yùn)用等,正確理解題意是解題的關(guān)鍵.
26、(1)見解析;(2)見解析;(3)能,圖見解析;
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于x軸的對(duì)稱點(diǎn)A1、B1、C1的位置,然后順次連接即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)A2、B2、C2的位置,然后順次連接即可;
(3)從圖中可發(fā)現(xiàn)成軸對(duì)稱圖形,根據(jù)軸對(duì)稱圖形的性質(zhì)畫出對(duì)稱軸即連接兩對(duì)應(yīng)點(diǎn)的線段,做它的垂直平分線.
【詳解】
(1)如圖所示:
(2)如圖所示:
(3)成軸對(duì)稱圖形,根據(jù)軸對(duì)稱圖形的性質(zhì)畫出對(duì)稱軸即連接兩對(duì)應(yīng)點(diǎn)的線段,作它的垂直平分線,如圖,對(duì)稱軸有2條.
此題考查利用旋轉(zhuǎn)變換作圖,利用軸對(duì)稱變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu)準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
題號(hào)
一
二
三
四
五
總分
得分
批閱人
每戶節(jié)水量(單位:噸)
1
1.2
1.5
節(jié)水戶數(shù)
65
15
20
成績(jī)(分)
24
25
26
27
28
29
30
人數(shù)(人)
6
5
5
8
7
7
4
這是一份2024-2025學(xué)年福建省永春縣九上數(shù)學(xué)開學(xué)經(jīng)典模擬試題【含答案】,共21頁(yè)。試卷主要包含了選擇題,解答題等內(nèi)容,歡迎下載使用。
這是一份2024-2025學(xué)年福建省廈門雙十中學(xué)數(shù)學(xué)九上開學(xué)調(diào)研模擬試題【含答案】,共19頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2024-2025學(xué)年福建省福州十中學(xué)數(shù)學(xué)九上開學(xué)調(diào)研模擬試題【含答案】,共27頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功