
1.本試卷分第Ⅰ卷和第Ⅱ卷兩部分,共4頁,滿分120分,考試用時(shí)120分鐘.考試結(jié)束后,將試題卷和答題卡一并交回.
2.答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、準(zhǔn)考證號(hào)、座號(hào)填寫在試題卷和答題卡規(guī)定的位置上.
3.第Ⅰ卷每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào),答案不能答在試題卷上;
4.第Ⅱ卷必須用0.5毫米黑色簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)的位置,不能寫在試題卷上;如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶.不按以上要求作答的答案無效.
第Ⅰ卷(選擇題 共24分)
一、選擇題:本大題共8個(gè)小題;在每小題的四個(gè)選項(xiàng)中只有一個(gè)是正確的,請(qǐng)把正確的選項(xiàng)選出來,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.每小題涂對(duì)得3分,滿分24分.
1. ﹣3的相反數(shù)是( )
A. B. C. D.
【答案】D
【解析】
【分析】相反數(shù)的定義是:如果兩個(gè)數(shù)只有符號(hào)不同,我們稱其中一個(gè)數(shù)為另一個(gè)數(shù)的相反數(shù),特別地,0的相反數(shù)還是0.
【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3,
故選D.
【點(diǎn)睛】本題考查相反數(shù),題目簡單,熟記定義是關(guān)鍵.
2. 下列計(jì)算,結(jié)果正確的是( )
A. B. C. D.
【答案】A
【解析】
【分析】根據(jù)同底數(shù)冪的乘法可判斷A,根據(jù)冪的乘方可判斷B,根據(jù)積的乘方可判斷C,根據(jù)整數(shù)指數(shù)冪的運(yùn)算可判斷D,從而可得答案.
【詳解】解:,運(yùn)算正確,故A符合題意;
,原運(yùn)算錯(cuò)誤,故B不符合題意;
,原運(yùn)算錯(cuò)誤,故C不符合題意;
,原運(yùn)算錯(cuò)誤,故D不符合題意;
故選A.
【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法,冪的乘方,積的乘方,同底數(shù)冪的除法運(yùn)算,負(fù)整數(shù)指數(shù)冪的含義,整數(shù)指數(shù)冪的運(yùn)算,熟記運(yùn)算法則是解本題的關(guān)鍵.
3. 如圖所示擺放的水杯,其俯視圖為( )
A. B. C. D.
【答案】D
【解析】
【分析】根據(jù)從上邊看得到的圖形是俯視圖,可得答案.
【詳解】解:俯視圖是從上面看到的圖形,應(yīng)該是:
故選:D.
【點(diǎn)睛】本題主要考查簡單幾何體的三視圖,掌握俯視圖是從上邊看得到的圖形是解題的關(guān)鍵.
4. 一元二次方程根的情況為( )
A. 有兩個(gè)不相等的實(shí)數(shù)根B. 有兩個(gè)相等的實(shí)數(shù)根C. 沒有實(shí)數(shù)根D. 不能判定
【答案】A
【解析】
【分析】根據(jù)題意,求得,根據(jù)一元二次方程根的判別式的意義,即可求解.
【詳解】解:∵一元二次方程中,,
∴,
∴一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,
故選:A.
【點(diǎn)睛】本題考查了一元二次方程的根的判別式的意義,熟練掌握一元二次方程根的判別式的意義是解題的關(guān)鍵.
5. 由化學(xué)知識(shí)可知,用表示溶液酸堿性的強(qiáng)弱程度,當(dāng)時(shí)溶液呈堿性,當(dāng)時(shí)溶液呈酸性.若將給定的溶液加水稀釋,那么在下列圖象中,能大致反映溶液的與所加水的體積之間對(duì)應(yīng)關(guān)系的是( )
A. B. C. D.
【答案】B
【解析】
【分析】根據(jù)題意,溶液呈堿性,隨著加入水的體積的增加,溶液的濃度越來越低,的值則接近7,據(jù)此即可求解.
【詳解】解:∵溶液呈堿性,則,隨著加入水的體積的增加,溶液的濃度越來越低,的值則接近7,
故選:B.
【點(diǎn)睛】本題考查了函數(shù)的圖象,數(shù)形結(jié)合是解題的關(guān)鍵.
6. 在某次射擊訓(xùn)練過程中,小明打靶次的成績(環(huán))如下表所示:
則小明射擊成績的眾數(shù)和方差分別為( )
A. 和B. 和C. 和D. 和
【答案】C
【解析】
【分析】根據(jù)眾數(shù)的定義,以及方差的定義,即可求解.
【詳解】解:這組數(shù)據(jù)中,10出現(xiàn)了4次,故眾數(shù)為10,
平均數(shù)為:,
方差為,
故選:C.
【點(diǎn)睛】本題考查了眾數(shù)的定義,以及方差的定義,熟練掌握眾數(shù)的定義,以及方差的定義是解題的關(guān)鍵.眾數(shù):在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).方差:一般地,各數(shù)據(jù)與平均數(shù)的差的平方的平均數(shù)叫做這組數(shù)據(jù)的方差..
7. 如圖,某玩具品牌的標(biāo)志由半徑為的三個(gè)等圓構(gòu)成,且三個(gè)等圓相互經(jīng)過彼此的圓心,則圖中三個(gè)陰影部分的面積之和為( )
A. B. C. D.
【答案】C
【解析】
【分析】根據(jù)圓的對(duì)稱性可知:圖中三個(gè)陰影部分的面積相等,只要計(jì)算出一個(gè)陰影部分的面積即可,如圖,連接,陰影的面積=扇形的面積,據(jù)此即可解答.
【詳解】解:根據(jù)圓的對(duì)稱性可知:圖中三個(gè)陰影部分的面積相等;
如圖,連接,則,是等邊三角形,
∴,弓形的面積相等,
∴陰影的面積=扇形的面積,
∴圖中三個(gè)陰影部分的面積之和;
故選:C.
【點(diǎn)睛】本題考查了不規(guī)則圖形面積的計(jì)算,正確添加輔助線、掌握求解的方法是解題關(guān)鍵.
8. 已知點(diǎn)是等邊的邊上的一點(diǎn),若,則在以線段為邊的三角形中,最小內(nèi)角的大小為( )
A. B. C. D.
【答案】B
【解析】
【分析】將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,可得以線段為邊的三角形,即,最小的銳角為,根據(jù)鄰補(bǔ)角以及旋轉(zhuǎn)的性質(zhì)得出,進(jìn)而即可求解.
【詳解】解:如圖所示,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,
∴,,,
∴是等邊三角形,
∴,
∴以線段為邊的三角形,即,最小的銳角為,
∵,
∴
∴
∴,
故選:B.
【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì)與判定,熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.
第Ⅱ卷(非選擇題 共96分)
二、填空題:本大題共8個(gè)小題,每小題3分,滿分24分.
9. 計(jì)算結(jié)果為___________.
【答案】
【解析】
【分析】化簡絕對(duì)值,根據(jù)有理數(shù)的運(yùn)算法則進(jìn)行計(jì)算即可.
【詳解】,
故答案為:.
【點(diǎn)睛】本題考查有理數(shù)的加減法則,熟練掌握有理數(shù)的加減法則是解題的關(guān)鍵.
10. 一塊面積為的正方形桌布,其邊長為___________.
【答案】##米
【解析】
【分析】由正方形的邊長是其面積的算術(shù)平方根可得答案.
【詳解】解:一塊面積為的正方形桌布,其邊長為,
故答案為:
【點(diǎn)睛】本題考查的是算術(shù)平方根的含義,理解題意,利用算術(shù)平方根的含義表示正方形的邊長是解本題的關(guān)鍵.
11. 不等式組的解集為___________.
【答案】
【解析】
【分析】分別解兩個(gè)不等式,再取兩個(gè)解集的公共部分即可.
【詳解】解:,
由①得:,
由②得:,
∴不等式組的解集為:;
故答案為:
【點(diǎn)睛】本題考查的是一次不等式組的解法,掌握一元一次不等式組的解法步驟與方法是解本題的關(guān)鍵.
12. 如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為.若將向左平移3個(gè)單位長度得到,則點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是___________.
【答案】
【解析】
【分析】根據(jù)平移的性質(zhì)即可得出答案.
【詳解】將向左平移3個(gè)單位長度得到,
,
,
故答案為:.
【點(diǎn)睛】本題考查平移的性質(zhì),熟知左右平移縱坐標(biāo)不變是解題的關(guān)鍵.
13. 同時(shí)擲兩枚質(zhì)地均勻的骰子,則兩枚骰子點(diǎn)數(shù)之和等于7的概率是___________.
【答案】
【解析】
【分析】利用表格或樹狀圖列示出所有可能結(jié)果,找出滿足條件的結(jié)果,根據(jù)概率公式計(jì)算即可.
【詳解】所有可能結(jié)果如下表 ,
所有結(jié)果共有36種,其中,點(diǎn)數(shù)之和等于7的結(jié)果有6種,概率為
故答案為:.
【點(diǎn)睛】本題考查概率的計(jì)算,運(yùn)用列表或樹狀圖列示出所有可能結(jié)果是解題的關(guān)鍵.
14. 如圖,分別與相切于兩點(diǎn),且.若點(diǎn)是上異于點(diǎn)的一點(diǎn),則的大小為___________.
【答案】或
【解析】
【分析】根據(jù)切線的性質(zhì)得到,根據(jù)四邊形內(nèi)角和為,得出,然后根據(jù)圓周角定理即可求解.
【詳解】解:如圖所示,連接,當(dāng)點(diǎn)在優(yōu)弧上時(shí),
∵分別與相切于兩點(diǎn)
∴,
∵.
∴
∵,
∴,
當(dāng)點(diǎn)在上時(shí),
∵四邊形是圓內(nèi)接四邊形,
∴,
故答案為:或.
【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,多邊形內(nèi)角和,熟練掌握切線的性質(zhì)與圓周角定理是解題的關(guān)鍵.
15. 要修一個(gè)圓形噴水池,在池中心豎直安裝一根水管,水管頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為處達(dá)到最高,高度為,水柱落地處離池中心,水管長度應(yīng)為____________.
【答案】##2.25米##米##m##米##m
【解析】
【分析】以池中心為原點(diǎn),豎直安裝的水管為y軸,與水管垂直的水平面為x軸建立直角坐標(biāo)系,設(shè)拋物線的解析式為,將代入求得a值,則時(shí)得的y值即為水管的長.
【詳解】解:以池中心為原點(diǎn),豎直安裝的水管為y軸,與水管垂直的水平面為x軸建立直角坐標(biāo)系.
由于在距池中心的水平距離為時(shí)達(dá)到最高,高度為,
則設(shè)拋物線的解析式為:
,
代入求得:.
將值代入得到拋物線的解析式為:,
令,則.
故水管長度為.
故答案為:.
【點(diǎn)睛】本題考查了二次函數(shù)在實(shí)際生活中的運(yùn)用,重點(diǎn)是二次函數(shù)解析式的求法,正確建立平面直角坐標(biāo)系是解題的關(guān)鍵.
16. 如圖,矩形的對(duì)角線相交于點(diǎn),點(diǎn)分別是線段上的點(diǎn).若,則的長為___________.
【答案】
【解析】
【分析】過點(diǎn)分別作的垂線,垂足分別為,等面積法證明,進(jìn)而證明,,根據(jù)全等三角形的性質(zhì)得出,,根據(jù)已知條件求得,進(jìn)而勾股定理求得,進(jìn)而即可求解.
【詳解】解:如圖所示,過點(diǎn)分別作的垂線,垂足分別為,
∵四邊形是矩形,
∴,
∵,
∴,
∴,
∴,
∵,
∴
∴
設(shè)
在中,
∴
∴,
∴
∴
解得:
∴
在中,,
在中,
∴,
故答案為:.
【點(diǎn)睛】本題考查了矩形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,熟練掌握以上知識(shí)是解題的關(guān)鍵.
三、解答題:本大題共6個(gè)小題,滿分72分.解答時(shí)請(qǐng)寫出必要的演推過程.
17. 中共中央辦公廳、國務(wù)院辦公廳印發(fā)的《關(guān)于進(jìn)一步減輕義務(wù)教育階段學(xué)生作業(yè)負(fù)擔(dān)和校外培訓(xùn)負(fù)擔(dān)的意見》中,對(duì)學(xué)生每天的作業(yè)時(shí)間提出明確要求:“初中書面作業(yè)平均完成時(shí)間不超過90分鐘”.為了更好地落實(shí)文件精神,某縣對(duì)轄區(qū)內(nèi)部分初中學(xué)生就“每天完成書面作業(yè)的時(shí)間”進(jìn)行了隨機(jī)調(diào)查,為便于統(tǒng)計(jì)學(xué)生每天完成書面作業(yè)的時(shí)間(用t表示,單位h)狀況設(shè)置了如下四個(gè)選項(xiàng),分別為A:,B:,C:,D:,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上提供的信息解答下列問題:
(1)此次調(diào)查,選項(xiàng)A中的學(xué)生人數(shù)是多少?
(2)在扇形統(tǒng)計(jì)圖中,選項(xiàng)D所對(duì)應(yīng)的扇形圓心角的大小為多少?
(3)如果該縣有15000名初中學(xué)生,那么請(qǐng)估算該縣“每天完成書面作業(yè)的時(shí)間不超過90分鐘”的初中學(xué)生約有多少人?
(4)請(qǐng)回答你每天完成書面作業(yè)的時(shí)間屬于哪個(gè)選項(xiàng),并對(duì)老師的書面作業(yè)布置提出合理化建議.
【答案】(1)8人 (2)
(3)9600人 (4)見解析
【解析】
【分析】(1)用選項(xiàng)C中的學(xué)生人數(shù)除以其所占比例求出總?cè)藬?shù),然后用總?cè)藬?shù)減去其它三個(gè)組的人數(shù)即可求出選項(xiàng)A的人數(shù);
(2)用乘以其所占比例即可求出答案;
(3)利用樣本估計(jì)總體的思想解答即可;
(4)答案不唯一,合理即可;如可以結(jié)合(3)小題的結(jié)果分析.
【小問1詳解】
解:此次調(diào)查的總?cè)藬?shù)是人,
所以選項(xiàng)A中的學(xué)生人數(shù)是(人);
【小問2詳解】
,
選項(xiàng)D所對(duì)應(yīng)的扇形圓心角的大小為;
【小問3詳解】
;
所以估算該縣“每天完成書面作業(yè)的時(shí)間不超過90分鐘”的初中學(xué)生約有9600人;
【小問4詳解】
我的作業(yè)時(shí)間屬于B選項(xiàng);從調(diào)查結(jié)果來看:僅有的學(xué)生符合“初中書面作業(yè)平均完成時(shí)間不超過90分鐘”,還有的學(xué)生每天完成書面作業(yè)的時(shí)間超過了90分鐘,所以布置的作業(yè)應(yīng)該精簡量少.(答案不唯一,合理即可).
【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖以及利用樣本估計(jì)總體等知識(shí),正確理解題意、從統(tǒng)計(jì)圖中獲取解題所需要的信息是解題的關(guān)鍵.
18. 先化簡,再求值:,其中滿足.
【答案】;
【解析】
【分析】先根據(jù)分式的加減計(jì)算括號(hào)內(nèi)的,然后將除法轉(zhuǎn)化為乘法,再根據(jù)分式的性質(zhì)化簡,根據(jù)負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值,求得的值,最后將代入化簡結(jié)果即可求解.
【詳解】解:
;
∵,
即,
∴原式.
【點(diǎn)睛】本題考查了分式化簡求值,解題關(guān)鍵是熟練運(yùn)用分式運(yùn)算法則以及負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值進(jìn)行求解.
19. 如圖,直線為常數(shù)與雙曲線(為常數(shù))相交于,兩點(diǎn).
(1)求直線的解析式;
(2)在雙曲線上任取兩點(diǎn)和,若,試確定和的大小關(guān)系,并寫出判斷過程;
(3)請(qǐng)直接寫出關(guān)于不等式的解集.
【答案】(1)
(2)當(dāng)或時(shí),;當(dāng)時(shí),
(3)或
【解析】
【分析】(1)將點(diǎn)代入反比例函數(shù),求得,將點(diǎn)代入,得出,進(jìn)而待定系數(shù)法求解析式即可求解;
(2)根據(jù)反比例函數(shù)的性質(zhì),反比例函數(shù)在第二四象限,在每個(gè)象限內(nèi),隨的增大而增大,進(jìn)而分類討論即可求解;
(3)根據(jù)函數(shù)圖象即可求解.
【小問1詳解】
解:將點(diǎn)代入反比例函數(shù),
∴,
∴
將點(diǎn)代入
∴,
將,代入,得
解得:,
∴
【小問2詳解】
∵,,
∴反比例函數(shù)在第二四象限,在每個(gè)象限內(nèi),隨的增大而增大,
∴當(dāng)或時(shí),,
當(dāng)時(shí),根據(jù)圖象可得,
綜上所述,當(dāng)或時(shí),;當(dāng)時(shí),,
【小問3詳解】
根據(jù)圖象可知,,,當(dāng)時(shí), 或.
【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)綜合,一次函數(shù)與反比例函數(shù)交點(diǎn)問題,待定系數(shù)法求一次函數(shù)的解析式,反比例函數(shù)圖象的性質(zhì),熟練掌握反比例函數(shù)圖象的性質(zhì)是解題的關(guān)鍵.
20. (1)已知線段,求作,使得;(請(qǐng)用尺規(guī)作圖,保留作圖痕跡,不寫作法.)
(2)求證:直角三角形斜邊上的中線等于斜邊的一半.(請(qǐng)借助上一小題所作圖形,在完善的基礎(chǔ)上,寫出已知、求證與證明.)
【答案】(1)見解析;(2)見解析
【解析】
【分析】(1)作射線,在上截取,過點(diǎn)作的垂線,在上截取,連接,則,即為所求;
(2)先根據(jù)題意畫出圖形,再證明.延長至使,連接、,因?yàn)槭堑闹悬c(diǎn),所以,因?yàn)椋运倪呅问瞧叫兴倪呅?,因?yàn)椋运倪呅问蔷匦?,根?jù)矩形的性質(zhì)可得出結(jié)論.
【詳解】(1)如圖所示,即為所求;
(2)已知:如圖,為中斜邊上的中線,,
求證:.
證明:延長并截取.
∵為邊中線,∴,
∴四邊形為平行四邊形.
∵,
∴平行四邊形為矩形,
∴,
∴
【點(diǎn)睛】本題考查了作直角三角形,直角三角形的性質(zhì),矩形的性質(zhì)與判定,解答此題的關(guān)鍵是作出輔助線,構(gòu)造出矩形,利用矩形的性質(zhì)解答.
21. 如圖,在平面直角坐標(biāo)系中,菱形的一邊在軸正半軸上,頂點(diǎn)的坐標(biāo)為,點(diǎn)是邊上的動(dòng)點(diǎn),過點(diǎn)作交邊于點(diǎn),作交邊于點(diǎn),連接.設(shè)的面積為.
(1)求關(guān)于的函數(shù)解析式;
(2)當(dāng)取何值時(shí),的值最大?請(qǐng)求出最大值.
【答案】(1)
(2)當(dāng)時(shí),的最大值為
【解析】
【分析】(1)過點(diǎn)作于點(diǎn),連接,證明是等邊三角形,可得,進(jìn)而證明,得出,根據(jù)三角形面積公式即可求解;
(2)根據(jù)二次函數(shù)的性質(zhì)即可求解.
【小問1詳解】
解:如圖所示,過點(diǎn)作于點(diǎn),連接,
∵頂點(diǎn)的坐標(biāo)為,
∴,,
∴,
∴
∵四邊形是菱形,
∴,,
∴是等邊三角形,
∴,
∵,
∴,
∴
∴是等邊三角形,
∴
∵,
∴,
∴
∵,,則,
∴
∴
∴
∴
∴
【小問2詳解】
解:∵
∵,
∴當(dāng)時(shí),的值最大,最大值為.
【點(diǎn)睛】本題考查了等邊三角形的判定與性質(zhì),菱形的性質(zhì),坐標(biāo)與圖形,特殊角的三角函數(shù)值,二次函數(shù)的性質(zhì),相似三角形的性質(zhì)與判定,熟練掌握以上知識(shí)是解題的關(guān)鍵.
22. 如圖,點(diǎn)是的內(nèi)心,的延長線與邊相交于點(diǎn),與的外接圓相交于點(diǎn).
(1)求證:;
(2)求證:;
(3)求證:;
(4)猜想:線段三者之間存在的等量關(guān)系.(直接寫出,不需證明.)
【答案】(1)見解析 (2)見解析
(3)見解析 (4)
【解析】
【分析】(1)過點(diǎn)F作,垂足分別為,則,進(jìn)而表示出兩個(gè)三角形的面積,即可求解;
(2)過點(diǎn)A作于點(diǎn),表示出兩三角形的面積,即可求解;
(3)連接,證明得出,證明,得出,即可,恒等式變形即可求解;
(4)連接,證明,得出,證明,得出,即可求解.
【小問1詳解】
證明:如圖所示,過點(diǎn)F作,垂足分別,
∵點(diǎn)是的內(nèi)心,
∴是的角平分線,
∵,
∴,
∵,
∴;
【小問2詳解】
證明:如圖所示,過點(diǎn)A作于點(diǎn),
∵,
∴,
由(1)可得,
∴;
【小問3詳解】
證明:連接,
∵
∴
∴
∴,
∴
∵,
∴,
又,
∴,
∴,
∴;
∴,
∴,
【小問4詳解】
解:如圖所示,連接,
∵點(diǎn)是的內(nèi)心,
∴是的角平分線,
∴,
∵,
∴,
∴,
∴,
∵,
,
∴,
∴,
∴.
【點(diǎn)睛】本題考查了三角形內(nèi)心的定義,同弧所對(duì)的圓周角相等,角平分線的性質(zhì)與定義,相似三角形的性質(zhì)與判定,三角形的外角性質(zhì),三角形的面積公式等知識(shí),熟練掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.靶次
第次
第次
第次
第次
第次
第次
第次
第次
第次
第次
成績(環(huán))
這是一份2023年山東省濱州市中考數(shù)學(xué)真題試卷(解析版),共23頁。
這是一份精品解析:2022年山東省濱州市中考數(shù)學(xué)真題(解析版),共21頁。試卷主要包含了答卷前,考生務(wù)必用0,第Ⅱ卷必須用0, 一元二次方程的根的情況為, 下列命題,其中是真命題的是等內(nèi)容,歡迎下載使用。
這是一份2022年山東省濱州市中考數(shù)學(xué)真題(解析版),共21頁。試卷主要包含了答卷前,考生務(wù)必用0,第Ⅱ卷必須用0, 一元二次方程的根的情況為, 下列命題,其中是真命題的是等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功