
學校_______ 年級_______ 姓名_______
注意事項
1.考試結束后,請將本試卷和答題卡一并交回.
2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.
3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.
4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.
5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.
一、選擇題(每題4分,共48分)
1.為了讓人們感受丟棄塑料袋對環(huán)境造成的影響,某班環(huán)保小組的6名同學記錄了自己家中一周內丟棄塑料袋的數(shù)量,結果如下:(單位:個)33,25,28,26,25,31,如果該班有45名學生,那么根據(jù)提供的數(shù)據(jù)估計本周全班同學各家總共丟棄塑料袋的數(shù)量為( )
A.900個B.1080個C.1260個D.1800個
2.在同一平面上,外有一定點到圓上的距離最長為10,最短為2,則的半徑是( )
A.5B.3C.6D.4
3.若是一元二次方程的兩個實數(shù)根,則的值為( )
A.B.C.D.
4.小明、小亮、小梅、小花四人共同探究函數(shù)的值的情況,他們作了如下分工:小明負責找函數(shù)值為1時的值,小亮負責找函數(shù)值為0時的值,小梅負責找最小值,小花負責找最大值.幾分鐘后,各自通報探究的結論,其中錯誤的是( )
A.小明認為只有當時,函數(shù)值為1;
B.小亮認為找不到實數(shù),使函數(shù)值為0;
C.小花發(fā)現(xiàn)當取大于2的實數(shù)時,函數(shù)值隨的增大而增大,因此認為沒有最大值;
D.小梅發(fā)現(xiàn)函數(shù)值隨的變化而變化,因此認為沒有最小值
5.如圖,點A、B、C、D、O都在方格紙的格點上,若△COD是由△AOB繞點O按逆時針方向旋轉而得,則旋轉的角度為( )
A.30°B.45°
C.90°D.135°
6.二次函數(shù)y=(x﹣1)2+2,它的圖象頂點坐標是( )
A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,2)
7.已知二次函數(shù)和一次函數(shù)的圖象如圖所示,下面四個推斷:
①二次函數(shù)有最大值
②二次函數(shù)的圖象關于直線對稱
③當時,二次函數(shù)的值大于0
④過動點且垂直于x軸的直線與的圖象的交點分別為C,D,當點C位于點D上方時,m的取值范圍是或,其中正確的有( )
A.1個B.2個C.3個D.4個
8.矩形、菱形、正方形都一定具有的性質是( )
A.鄰邊相等B.四個角都是直角
C.對角線相等D.對角線互相平分
9.如圖所示的幾何體的俯視圖是( )
A.B.C.D.
10.在中,,、的對邊分別是、,且滿足,則等于( )
A.B.2C.D.
11.一枚質地均勻的骰子,它的六個面上分別有1到6的點數(shù).下列事件中,是不可能事件的是( )
A.擲一次這枚骰子,向上一面的點數(shù)小于5
B.擲一次這枚骰子,向上一面的點數(shù)等于5
C.擲一次這枚骰子,向上一面的點數(shù)等于6
D.擲一次這枚骰子,向上一面的點數(shù)大于6
12.下列說法正確的是( )
A.“任意畫一個三角形,其內角和為”是隨機事件
B.某種彩票的中獎率是,說明每買100張彩票,一定有1張中獎
C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件
D.投擲一枚質地均勻的硬幣100次,正面向上的次數(shù)一定是50次
二、填空題(每題4分,共24分)
13.如圖,RtABC中,∠C=90°,AC=10,BC=1.動點P以每秒3個單位的速度從點A開始向點C移動,直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P移動到與點C重合時,點P和直線l同時停止運動.在移動過程中,將PEF繞點E逆時針旋轉,使得點P的對應點M落在直線l上,點F的對應點記為點N,連接BN,當BN∥PE時,t的值為_____.
14.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為______.
15.菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=_____cm.
16.從甲、乙、丙、丁4名三好學生中隨機抽取2名學生擔任升旗手,則抽取的2名學生是甲和乙的概率為 ________.
17.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1 ,
其中正確的是________.
18.如圖,四邊形ABCD內接于⊙O,連結AC,若∠BAC=35°,∠ACB=40°,則∠ADC=_____°.
三、解答題(共78分)
19.(8分)綜合與探究
如圖,已知拋物線與軸交于,兩點,與軸交于點,對稱軸為直線,頂點為.
(1)求拋物線的解析式及點坐標;
(2)在直線上是否存在一點,使點到點的距離與到點的距離之和最小?若存在,求出點的坐標;若不存在,請說明理由.
(3)在軸上取一動點,,過點作軸的垂線,分別交拋物線,,于點,,.
①判斷線段與的數(shù)量關系,并說明理由
②連接,,,當為何值時,四邊形的面積最大?最大值為多少?
20.(8分)如圖,在中,,,以為頂點在邊上方作菱形,使點分別在邊上,另兩邊分別交于點,且點恰好平分.
(1)求證: ;
(2)請說明:.
21.(8分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉 270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側,連接OP.
(1)求證:AP=BQ;
(2)當BQ= 時,求的長(結果保留 );
(3)若△APO的外心在扇形COD的內部,求OC的取值范圍.
22.(10分)將一副直角三角板按右圖疊放.
(1)證明:△AOB∽△COD;
(2)求△AOB與△DOC的面積之比.
23.(10分)如圖,在△ABC中,點D在BC邊上,BD=AD=AC,E為CD的中點.若∠B=35°,求∠CAE度數(shù).
24.(10分)某企業(yè)生產并銷售某種產品,整理出該商品在第()天的售價與函數(shù)關系如圖所示,已知該商品的進價為每件30元,第天的銷售量為件.
(1)試求出售價與之間的函數(shù)關系是;
(2)請求出該商品在銷售過程中的最大利潤;
(3)在該商品銷售過程中,試求出利潤不低于3600元的的取值范圍.
25.(12分)如圖①,四邊形是邊長為2的正方形,,四邊形是邊長為的正方形,點分別在邊上,此時,成立.
(1)當正方形繞點逆時針旋轉,如圖②,成立嗎?若成立,請證明;若不成立,請說明理由;
(2)當正方形繞點逆時針旋轉(任意角)時,仍成立嗎?直接回答;
(3)連接,當正方形繞點逆時針旋轉時,是否存在∥,若存在,請求出的值;若不存在,請說明理由.
26.(12分)已知關于x的一元二次方程.
(1)求證:方程總有兩個不相等的實數(shù)根.
(2)若此方程的一個根是1,求出方程的另一個根及m的值.
參考答案
一、選擇題(每題4分,共48分)
1、C
2、D
3、C
4、D
5、C
6、D
7、B
8、D
9、D
10、B
11、D
12、C
二、填空題(每題4分,共24分)
13、
14、1
15、1
16、?
17、①③⑤
18、1
三、解答題(共78分)
19、 (1),點坐標為;(2)點的坐標為;(3)①;②當為-2時,四邊形的面積最大,最大值為4.
20、(1)證明見解析;(2)證明見解析.
21、(1)詳見解析;(2);(3)4
這是一份2023-2024學年江蘇省蘇州市草橋實驗中學數(shù)學九年級第一學期期末預測試題含答案,共8頁。
這是一份2023-2024學年江蘇省鹽城市鹽城中學數(shù)學九年級第一學期期末調研試題含答案,共8頁。試卷主要包含了如圖,已知點A等內容,歡迎下載使用。
這是一份2023-2024學年江蘇省蘇州市東山中學數(shù)學九年級第一學期期末經典試題含答案,共8頁。試卷主要包含了答題時請按要求用筆,拋物線y=2等內容,歡迎下載使用。
注冊成功