?廣東省汕尾市2022-2023學(xué)年高一下學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷
學(xué)校:___________姓名:___________班級:___________考號:___________

一、選擇題
1、若復(fù)數(shù)是純虛數(shù),則實數(shù)( )
A.1 B.0或1 C.1或2 D.1或3
2、已知,,,則( )
A. B. C. D.或
3、將函數(shù)的圖象向左平移個周期后所得圖象對應(yīng)的函數(shù)為( )
A. B.
C. D.
4、已知直線a,b,l和平面,則下列命題正確的是( )
A.若,,則
B.若,,,,則
C.若,,,,則
D.若,,則
5、已知,,則( )
A. B. C. D.
6、在正三棱柱中,D為棱的中點(diǎn),,則直線與直線所成角的余弦值為( )
A.0 B. C. D.
7、在中,內(nèi)角A,B,C所對的邊分別為a,b,c,,,則( )
A. B. C. D.
8、如圖,在邊長為2的正方形ABCD中,E,F(xiàn)分別是AB,BC的中點(diǎn),將,,分別沿DE,EF,DF折起,使得A,B,C三點(diǎn)重合于點(diǎn),若三棱錐的所有頂點(diǎn)均在球O的球面上,則球O的體積為( )

A. B. C. D.
二、多項選擇題
9、已知復(fù)數(shù),,則下列說法正確的有( )
A. B.
C. D.在復(fù)平面內(nèi),對應(yīng)的點(diǎn)關(guān)于虛軸對稱
10、已知函數(shù),,且的最小正周期為,則下列說法正確的有( )
A.
B.當(dāng)時,的最小值為1
C.在區(qū)間上單調(diào)遞增
D.若為偶函數(shù),則正實數(shù)的最小值為
11、下列說法正確的有( )
A.若,滿足,,則的最大值為3
B.向量在向量上的投影向量為
C.若,,且,則
D.若圓O中,弦AB的長為4,則
12、在棱長為2的正方體中,M,N分別為棱,的中點(diǎn),則( )
A.直線BN與直線是異面直線
B.直線與直線BN共面
C.直線AM與平面ABC所成角的正弦值為
D.點(diǎn)到平面的距離為
三、填空題
13、化簡______.
14、已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則這個圓錐的底面半徑是______.
15、在平行四邊形ABCD中,,,,則______.
16、如圖是古希臘數(shù)學(xué)家希波克拉底研究的幾何圖形,此圖由三個半圓構(gòu)成,直徑分別是直角三角形ABC的斜邊AB,直角邊AC,BC,點(diǎn)E在以AC為直徑的半圓上,延長AE,BC交于點(diǎn)D.若,,,則的面積是______.

四、解答題
17、已知點(diǎn),,.
(1)若,是實數(shù),且,求的值;
(2)求與的夾角的余弦值.
18、已知函數(shù).
(1)求的最小正周期;
(2)在中,若,求的最大值.
19、如圖,在正方體中,E,F(xiàn)分別為棱,的中點(diǎn),P是線段上的動點(diǎn).證明:
??
(1)平面BDF;
(2)平面BDF.
20、記的內(nèi)角A,B,C的對邊分別是a,b,c,已知.
(1)求A;
(2)若,,求的面積.
21、如圖,在四棱錐中,底面ABCD為正方形,平面ABCD,,E為棱PB的中點(diǎn).證明:

(1)平面PBC;
(2)平面平面PCD.
22、如圖,已知直線,A是,之間的一個定點(diǎn),且點(diǎn)A到,的距離分別為1,2,B是直線上的一個動點(diǎn),作,且使AC與直線交于點(diǎn)C.設(shè),的面積為.

(1)求的最小值;
(2)已知,,若對任意的,不等式恒成立,求實數(shù)b的取值范圍.
參考答案
1、答案:B
解析:因為復(fù)數(shù)是純虛數(shù),
所以,解得:或,
故選:B.
2、答案:D
解析:因為,,故設(shè),又,
所以,解得,
所以或.
故選:D
3、答案:D
解析:因為函數(shù)的最小正周期為,即,
故向左平移個周期后所得,
故選:D.
4、答案:B
解析:A選項,若,,可能,所以A選項錯誤.
B選項,若,,,,則,所以B選項正確.
C選項,若,,,,當(dāng)時,l與不一定垂直,所以C選項錯誤.
D選項,若,,可能,所以D選項錯誤.
故選:B
5、答案:C
解析:因為,,所以,
所以.
故選:C
6、答案:A
解析:取AB的中點(diǎn)E,的中點(diǎn)F,連接DE,CE,EF,CF,
則,,
因為D為棱的中點(diǎn),E為AB的中點(diǎn),,,
所以,,
所以四邊形為平行四邊形,
所以,,
因為,,
所以,,
所以四邊形為平行四邊形,
所以,
所以為直線與直線所成角,
因為在正三棱柱中,,
所以,,,
在中,由余弦定理得,
所以直線與直線所成角的余弦值為0,
故選:A

7、答案:D
解析:根據(jù)題意,,利用正弦定理得:,
再結(jié)合,可得,
由余弦定理:,所以D選項正確.
故選:D
8、答案:C
解析:根據(jù)題意,可得,,且,,
所以三棱錐可補(bǔ)成一個長方體,則三棱錐的外接球即為長方體的外接球,如圖所示,
設(shè)長方體的外接球的半徑為R,可得,所以,
所以外接球的體積為.
故選:C.

9、答案:AB
解析:對于選項A,,故選項A正確;
對于選項B,,,所以,故選項B正確;
對于選項C,,故選項C錯誤;
對于選項D,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,對應(yīng)的點(diǎn)為,點(diǎn),關(guān)于實軸對稱,故選項D錯誤.
故選:AB.
10、答案:AD
解析:由,
因為的最小正周期為,所以,所以,
所以A正確;
當(dāng),可得,當(dāng)時,即時,函數(shù)取得最小值,最小值為,所以B不正確;
當(dāng),可得,所以函數(shù)不是單調(diào)函數(shù),所以C不正確;
由,若函數(shù)為偶函數(shù),
可得,即,解得,
解得,當(dāng)時,,所以正實數(shù)的最小值為,所以D正確.
故選:AD.
11、答案:BD
解析:對于A,因為,,
所以,
因為,所以當(dāng)時,取得最大值5,所以A錯誤,
對于B,向量在向量上的投影向量為,所以B正確,
對于C,由,,得,
因為,所以或,所以C錯誤,
對于D,因為在圓O中,弦AB的長為4,
所以,
所以D正確,
故選:BD
12、答案:ABD
解析:對于A,因為平面,平面,平面,
由異面直線的定義可得,直線BN與是異面直線,故A正確;

對于B,連接MN,,由正方體的性質(zhì)知,因為,
又因為,所以,所以M,N,,B四點(diǎn)共面,
所以直線與直線BN共面,故B正確;

對于C,取DC的中點(diǎn)H,連接MH,由正方體的性質(zhì)知:平面ABC,
所以是直線AM與平面ABC所成角,
所以,
,故C錯誤;

對于D,設(shè)點(diǎn)到平面的距離為h,
所以,
因為,,
取DC的中點(diǎn)H,連接MH,由正方體的性質(zhì)知:平面ABC,
連接BH,所以,,
,所以,
所以,
,
所以由可得:,故D正確.
??
故選:ABD.
13、答案:
解析:




,
故答案為:
14、答案:1
解析:設(shè)圓錐的底面的半徑為r,圓錐的母線為l,
則由得,

故,
解得,
故答案為:1.
15、答案:24
解析:由于,所以,
故,
故答案為:24
16、答案:
解析:由題意得:,
所以,故,所以,
因為,所以

,
因為,,,所以,
又因為,,所以,
所以的面積是.
故選:A.
17、答案:(1)
(2)
解析:(1),,,
,,,故


解得
(2),,,
,
故與的夾角的余弦值為.
18、答案:(1)
(2)
解析:(1)



的最小正周期為.
(2)由,即,,
得,即,
,

當(dāng),即時,取得最大值
19、答案:(1)證明見解析
(2)證明見解析
解析:(1)如圖,連接AC交BD于點(diǎn)O,連接FO.
F為的中點(diǎn),O為AC的中點(diǎn),
FO為的中位線,
.
又平面BDF,平面BDF,
平面BDF

(2)連接,,連接交于點(diǎn),連接,如圖.
在正方體中,,
平面BDF,平面BDF,
平面BDF.
又為的中位線,
.
平面BDF,平面BDF,
平面BDF.
又平面,平面,,
平面平面BDF.
平面,
平面BDF.
20、答案:(1)
(2)
解析:(1)在中,由正弦定理及,
得,
又在中,,,
,
,
.
(2)在中,由余弦定理可知,
又,,
解得或(舍去),
故的面積為.
21、答案:(1)證明見解析
(2)證明見解析
解析:(1),且E為PB的中點(diǎn),
,
平面ABCD,平面ABCD,
,
在正方形ABCD中,,
又AB,平面PAB,,
平面PAB,
又平面PAB,
,
BC,平面PBC,,
平面PBC.
(2)設(shè)PD的中點(diǎn)為Q,連接AQ,如圖.
,
,
又,,PA,平面PAD,,
平面PAD,
平面PAD,,
又CD,平面PCD,,
平面PCD,
平面PAD,
平面平面PCD.

22、答案:(1)2
(2)答案見解析
解析:(1)在中,,則;
在中,,,則,
的面積.
,,
故當(dāng),即時,取得最大值1,此時取得最小值2.
(2)由(1)知,,
.
不等式對任意的恒成立,
等價于對任意的恒成立.
令,則,
因為,所以,所以,
又,
.
令,其中,
,.
①當(dāng)時,,即;
②當(dāng)時,函數(shù)在上單調(diào)遞增,
,即;
③當(dāng)時,函數(shù)在上單調(diào)遞減,
,即
綜上,當(dāng)時,實數(shù)b的取值范圍是;
當(dāng)時,實數(shù)b的取值范圍.


相關(guān)試卷

廣東省汕尾市2023-2024高二上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案:

這是一份廣東省汕尾市2023-2024高二上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案,共9頁。

廣東省汕尾市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量測試數(shù)學(xué)試卷(含答案):

這是一份廣東省汕尾市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量測試數(shù)學(xué)試卷(含答案),共13頁。試卷主要包含了選擇題,多項選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

廣東省汕尾市2023-2024高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案:

這是一份廣東省汕尾市2023-2024高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案,共8頁。

英語朗讀寶

相關(guān)試卷 更多

廣東省汕尾市2023-2024高二上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案

廣東省汕尾市2023-2024高二上學(xué)期期末教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案

2022-2023學(xué)年廣東省汕尾市高一(上)期末數(shù)學(xué)試卷

2022-2023學(xué)年廣東省汕尾市高一(上)期末數(shù)學(xué)試卷

廣東省汕尾市2021-2022高一下學(xué)期全市教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案

廣東省汕尾市2021-2022高一下學(xué)期全市教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案

廣東省汕尾市2021-2022高二下學(xué)期全市教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案

廣東省汕尾市2021-2022高二下學(xué)期全市教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試卷及答案

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期末專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯誤

手機(jī)驗證碼 獲取驗證碼

手機(jī)驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部