1.(多選題)給出下列三個等式:f(xy)=f(x)+f(y),f(x+y)=
f(x)+f(y)f(x)f(y),f(x+y)=1-f(x)f(y)
.下列函數(shù)中,滿足其中任何一個等
A.f(x)=3xC.f(x)=lg2x
B.f(x)=sin xD.f(x)=tan x
解析:選項 A,函數(shù)滿足 f(x+y)=f(x)f(y);選項 B 不滿足其中任何一個等式;選項 C,函數(shù)滿足 f(xy)=f(x)+f(y);
選項 D,函數(shù)滿足 f(x+y)=
f(x)+f(y)1-f(x)f(y)
2.(選修 1-2P46 第 3 題改編)下列四類函數(shù)中,有性質(zhì)“對
任意的 x>0,y>0,函數(shù) f(x)滿足 f(x+y)=f(x)f(y)”的是(
A.冪函數(shù)C.指數(shù)函數(shù)
B.對數(shù)函數(shù)D.余弦函數(shù)
解析:假設(shè) f(x)=ax,f(x)f(y)=axay=ax+y=f(x+y).答案:C
3. 已知 f(x +y) +f(x -y) =2f(x)·f(y) ,且 f(x)≠0 ,則 f(x) 是
A.奇函數(shù)C.非奇非偶函數(shù)
解析:令 x=y(tǒng)=0,則 2f(0)=2[f(0)]2,因為 f(x)≠0,所以f(0)=1.令 x=0,則 f(y)+f(-y)=2f(y),f(y)=f(-y),f(x)為偶函數(shù).故選 B.答案:B
4.(2008 年四川)函數(shù) f(x)滿足 f(x)·f(x+2)=13,若 f(1)=2,
5.(2014 年陜西)下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的
單調(diào)遞增函數(shù)是(A.f(x)=x3
解析:由 f(x+y)=(x+y)3,f(x)f(y)=x3·y3=(xy)3,得 f(x+y)≠f(x)f(y),所以 A 錯誤;又函數(shù) f(x)=3x 是定義在 R 上的增函數(shù).故選 B.答案:B
由 f(x+y)=3x+y,f(x)f(y)=3x·3y=3x+y,得 f(x+y)=f(x)f(y).
1.已知定義在 R 上的函數(shù) f(x)對任意實數(shù) x,y,恒有 f(x)(1)求證:f(x)為奇函數(shù);(2)求證:f(x)在 R 上是減函數(shù);(3)求 f(x)在[-3,6]上的最大值與最小值.
(1)證明:令 x=y(tǒng)=0,可得 f(0)+f(0)=f(0+0)=f(0),從而
令 y=-x,可得 f(x)+f(-x)=f(x-x)=f(0)=0,即 f(-x)=-f(x),故 f(x)為奇函數(shù).
(2)證明:對任意 x1,x2∈R,不妨設(shè) x1>x2,則 x1-x2>0,于是 f(x1-x2)0,
∴f(x)在(0,+∞)上是增函數(shù).∵偶函數(shù)圖象關(guān)于 y 軸對稱,∴f(x)在(-∞,0)上是減函數(shù).
(6)解:∵f(x(x-3))=f(x)+f(x-3)≤2,由①②得 2=1+1=f(2)+f(2)=f(4)=f(-4),ⅰ.若 x(x-3)>0,∵f(x)在(0,+∞)上為增函數(shù),
ⅱ.若 x(x-3)0.則 f(x1-x2)>1.
即 f(x1-x2)=
∴f(x)是 R 上的增函數(shù).方法二,設(shè) x1<x2,則 x2-x1>0.∴f(x2)=f(x2-x1+x1)=f(x2-x1)·f(x1).∵x2-x1>0,∴f(x2-x1)>1.又 f(x1)>0,∴f(x2-x1)·f(x1)>f(x1).∴f(x2)>f(x1).∴f(x)是 R 上的增函數(shù).
f(0)=1?f(-x)=
(6)解:由 f(x)·f(2x-x2)>1,f(0)=1,得 f(3x-x2)>f(0).∵f(x)是 R 上的增函數(shù),∴3x-x2>0.∴0<x<3.∴實數(shù) x 的取值范圍是{x|00,則 f(x1-x2)>1,f(x1)=f(x2+x1-x2)=f(x2)f(x1-x2)>f(x2),得到函數(shù)f(x)是增函數(shù).
已知定義在 R 上的函數(shù) f(x),對任意實數(shù) x,y 滿足:f(x+y)=f(x)f(y),若 x∈(0,+∞)時,0

相關(guān)課件

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第16講 導(dǎo)數(shù)與函數(shù)的單調(diào)性[配套課件]:

這是一份《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第16講 導(dǎo)數(shù)與函數(shù)的單調(diào)性[配套課件],共35頁。PPT課件主要包含了函數(shù)的單調(diào)性,單調(diào)遞減,函數(shù)的極值,f′x<0,f′x>0,么這個根不是極值點,極小值,函數(shù)的最值,題組一走出誤區(qū),對于Dy=等內(nèi)容,歡迎下載使用。

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第12講 函數(shù)與方程[配套課件]:

這是一份《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第12講 函數(shù)與方程[配套課件],共47頁。PPT課件主要包含了函數(shù)的零點,二分法,題組一,走出誤區(qū),圖D9,圖D10,所以D錯誤,故選B,答案B,題組三等內(nèi)容,歡迎下載使用。

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第10講 函數(shù)的圖象[配套課件]:

這是一份《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第10講 函數(shù)的圖象[配套課件],共48頁。PPT課件主要包含了3對稱變換,題組一,走出誤區(qū),題組二,走進教材,函數(shù)fx=,0a1的圖象,大致形狀是,答案C,題組三等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)課件 更多

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第9講 冪函數(shù)[配套課件]

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第9講 冪函數(shù)[配套課件]

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第7講 對數(shù)式與對數(shù)函數(shù)[配套課件]

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第7講 對數(shù)式與對數(shù)函數(shù)[配套課件]

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第3講 分段函數(shù)[配套課件]

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第3講 分段函數(shù)[配套課件]

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第1講 函數(shù)與映射的概念[配套課件]

《高考總復(fù)習(xí)》數(shù)學(xué) 第二章 第1講 函數(shù)與映射的概念[配套課件]

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部