



吉林省長春吉大附中力旺實驗中學2021-2022學年中考三模數(shù)學試題含解析
展開
這是一份吉林省長春吉大附中力旺實驗中學2021-2022學年中考三模數(shù)學試題含解析,共24頁。試卷主要包含了考生要認真填寫考場號和座位序號,點A,下列計算,結果等于a4的是等內容,歡迎下載使用。
2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。 一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一個正多邊形的內角和為900°,那么從一點引對角線的條數(shù)是( ?。?/span>A.3 B.4 C.5 D.62.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為( ?。?/span>A. B. C. D.3.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點E,現(xiàn)把△BCE繞點B逆時針旋轉,記旋轉后的△BCE為△BC′E′.當線段BE′和線段BC′都與線段AD相交時,設交點分別為F,G.若△BFD為等腰三角形,則線段DG長為( )A. B. C. D.4.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是( ?。?/span>A.15° B.30° C.45° D.60°5.下列圖形中既是中心對稱圖形又是軸對稱圖形的是( )A. B. C. D.6.點A(-1,),B(-2,)在反比例函數(shù)的圖象上,則,的大小關系是( )A.> B.= C.< D.不能確定7.為了配合 “我讀書,我快樂”讀書節(jié)活動,某書店推出一種優(yōu)惠卡,每張卡售價20元,憑卡購書可享受8折優(yōu)惠,小慧同學到該書店購書,她先買優(yōu)惠卡再憑卡付款,結果節(jié)省了10元,若此次小慧同學不買卡直接購書,則她需付款:A.140元 B.150元 C.160元 D.200元8.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為( )A.10cm B.30cm C.45cm D.300cm9.如圖,直線a∥b,點A在直線b上,∠BAC=100°,∠BAC的兩邊與直線a分別交于B、C兩點,若∠2=32°,則∠1的大小為( )A.32° B.42° C.46° D.48°10.下列計算,結果等于a4的是( ?。?/span>A.a+3a B.a5﹣a C.(a2)2 D.a8÷a211.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是( ?。?/span>A. B. C. D.12.如圖,是一個工件的三視圖,則此工件的全面積是( ?。?/span>A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,⊙O在△ABC三邊上截得的弦長相等,∠A=70°,則∠BOC=_____度.14.如果點P1(2,y1)、P2(3,y2) 在拋物線上,那么 y1 ______ y2.(填“>”,“<”或“=”).15.同一個圓的內接正方形和正三角形的邊心距的比為_____.16.計算:(2018﹣π)0=_____.17.同時擲兩個質地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為 .18.用4塊完全相同的長方形拼成正方形(如圖),用不同的方法,計算圖中陰影部分的面積,可得到1個關于的等式為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.20.(6分)如圖,AB∥CD,△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度數(shù).21.(6分)由我國完全自主設計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.22.(8分)在平面直角坐標系中,△ABC的頂點坐標是A(﹣2,3),B(﹣4,﹣1), C(2,0).點P(m,n)為△ABC內一點,平移△ABC得到△A1B1C1 ,使點P(m,n)移到P(m+6,n+1)處.(1)畫出△A1B1C1(2)將△ABC繞坐標點C逆時針旋轉90°得到△A2B2C,畫出△A2B2C;(3)在(2)的條件下求BC掃過的面積.23.(8分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.24.(10分)“母親節(jié)”前夕,某商店根據(jù)市場調查,用3000元購進第一批盒裝花,上市后很快售完,接著又用5000元購進第二批這種盒裝花.已知第二批所購花的盒數(shù)是第一批所購花盒數(shù)的2倍,且每盒花的進價比第一批的進價少5元.求第一批盒裝花每盒的進價是多少元?25.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)所給條件,請直接寫出不等式kx+b>的解集;過點B作BC⊥x軸,垂足為C,求S△ABC.26.(12分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.27.(12分)某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量,請設計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.
參考答案 一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
n邊形的內角和可以表示成(n-2)?180°,設這個多邊形的邊數(shù)是n,就得到關于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【詳解】設這個正多邊形的邊數(shù)是n,則
(n-2)?180°=900°,
解得:n=1.
則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內角和.解題關鍵點:熟記多邊形內角和公式.2、C【解析】
連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD= ∴∠COD=60°,∴陰影部分的面積= ,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關鍵.3、A【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴ =,即=,解得x=.故選A.【點睛】本題考查了旋轉的性質,矩形的性質,等腰三角形的性質,勾股定理,平行線分線段成比例定理,準確作出輔助線是解題關鍵.4、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數(shù)形結合的首先解決問題,屬于中考??碱}型.5、C【解析】
根據(jù)軸對稱圖形和中心對稱圖形的概念,對各個選項進行判斷,即可得到答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關鍵是熟練掌握概念進行分析判斷.6、C【解析】試題分析:對于反比例函數(shù)y=,當k>0時,在每一個象限內,y隨x的增大而減小,根據(jù)題意可得:-1>-2,則.考點:反比例函數(shù)的性質.7、B【解析】試題分析:此題的關鍵描述:“先買優(yōu)惠卡再憑卡付款,結果節(jié)省了人民幣10元”,設李明同學此次購書的總價值是人民幣是x元,則有:20+0.8x=x﹣10解得:x=150,即:小慧同學不憑卡購書的書價為150元.故選B.考點:一元一次方程的應用8、A【解析】
根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案。【詳解】直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。9、D【解析】
根據(jù)平行線的性質與對頂角的性質求解即可.【詳解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案選D.【點睛】本題考查了平行線的性質,解題的關鍵是熟練的掌握平行線的性質與對頂角的性質.10、C【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A.a+3a=4a,錯誤;B.a5和a不是同類項,不能合并,故此選項錯誤;C.(a2)2=a4,正確;D.a8÷a2=a6,錯誤.故選C.【點睛】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關鍵是正確掌握計算法則.11、A【解析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.12、C【解析】
先根據(jù)三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據(jù)圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π?62+?2π?6?10=96π(cm2).故答案選C.【點睛】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體. 二、填空題:(本大題共6個小題,每小題4分,共24分.)13、125【解析】
解:過O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分別為M,N,P∵∠A=70°,∠B+∠C=180°?∠A=110°∵O在△ABC三邊上截得的弦長相等,∴OM=ON=OP,∴O是∠B,∠C平分線的交點∴∠BOC=180°?12(∠B+∠C)=180°?12×110°=125°. 故答案為:125°【點睛】本題考查了圓心角、弧、弦的關系, 三角形內角和定理, 角平分線的性質,解題的關鍵是掌握它們的性質和定理.14、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數(shù)的性質,點M、N在對稱軸的右側,y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2. 故答案為>.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質,求得對稱軸,掌握二次函數(shù)圖象的性質解決問題.15、【解析】
先畫出同一個圓的內接正方形和內接正三角形,設⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【詳解】設⊙O的半徑為r,⊙O的內接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設⊙O的內接正△EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【點睛】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質、正方形的性質等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.16、1.【解析】
根據(jù)零指數(shù)冪:a0=1(a≠0)可得答案.【詳解】原式=1,故答案為:1.【點睛】此題主要考查了零次冪,關鍵是掌握計算公式.17、【解析】試題分析:首先列表,然后根據(jù)表格求得所有等可能的結果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.解:列表得:(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36種等可能的結果,兩個骰子的點數(shù)相同的有6種情況,∴兩個骰子的點數(shù)相同的概率為:=.故答案為.考點:列表法與樹狀圖法.18、(a+b)2﹣(a﹣b)2=4ab【解析】
根據(jù)長方形面積公式列①式,根據(jù)面積差列②式,得出結論.【詳解】S陰影=4S長方形=4ab①,S陰影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案為(a+b)2﹣(a﹣b)2=4ab.【點睛】本題考查了完全平方公式幾何意義的理解,此題有機地把代數(shù)與幾何圖形聯(lián)系在一起,利用幾何圖形的面積公式直接得出或由其圖形的和或差得出. 三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2) 【解析】分析:(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結合∠EDB=90°即可得到四邊形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結合BE=DF可得BE=5,由此可得AB=8,結合BF=DE=4即可求得tan∠BAF=.詳解:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD, ∵AE=CF,∴BE=DF, ∴四邊形BFDE是平行四邊形. ∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形; (2)在Rt△BCF中,由勾股定理,得AD =, ∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB. ∵AF平分∠DAB∴∠DAF=∠FAB, ∴∠DAF=∠DFA,∴DF=AD=5,∵四邊形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=. 點睛:(1)熟悉平行四邊形的性質和矩形的判定方法是解答第1小題的關鍵;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,進而推得DF=AD=5是解答第2小題的關鍵.20、20°【解析】
依據(jù)三角形內角和定理可得∠FGH=55°,再根據(jù)GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根據(jù)∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【詳解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【點睛】本題考查了平行線的性質,兩直線平行時,應該想到它們的性質,由兩直線平行的關系得到角之間的數(shù)量關系,從而達到解決問題的目的.21、還需要航行的距離的長為20.4海里.【解析】分析:根據(jù)題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數(shù)得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數(shù)的應用;求出CD的長度是解決問題的關鍵.22、(1)見解析;(2)見解析;(3).【解析】
(1)根據(jù)P(m,n)移到P(m+6,n+1)可知△ABC向右平移6個單位,向上平移了一個單位,由圖形平移的性質即可得出點A1,B1,C1的坐標,再順次連接即可;(2)根據(jù)圖形旋轉的性質畫出旋轉后的圖形即可;(3)先求出BC長,再利用扇形面積公式,列式計算即可得解.【詳解】解:(1)平移△ABC得到△A1B1C1,點P(m,n)移到P(m+6,n+1)處,∴△ABC向右平移6個單位,向上平移了一個單位,∴A1(4,4),B1(2,0),C1(8,1);順次連接A1,B1,C1三點得到所求的△A1B1C1(2)如圖所示:△A2B2C即為所求三角形.(3)BC的長為: BC掃過的面積【點睛】本題考查了利用旋轉變換作圖,利用平移變換作圖,比較簡單,熟練掌握網(wǎng)格結構,準確找出對應點的位置是解題的關鍵.23、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質可求得的值,當點P在第一象限內時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標為(,)或(﹣,).【點睛】本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質、全等三角形的判定和性質、相似三角形的判定和性質、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應用,在(2)中用C點坐標表示出△BOC的面積是解題的關鍵,在(3)中確定出點P的位置,構造相似三角形是解題的關鍵,注意分兩種情況.24、30元【解析】試題分析:設第一批盒裝花的進價是x元/盒,則第一批進的數(shù)量是:,第二批進的數(shù)量是:,再根據(jù)等量關系:第二批進的數(shù)量=第一批進的數(shù)量×2可得方程.解:設第一批盒裝花的進價是x元/盒,則2×=,解得 x=30經(jīng)檢驗,x=30是原方程的根.答:第一批盒裝花每盒的進價是30元.考點:分式方程的應用.25、(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】
(1)根據(jù)點A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點B坐標代入反比例函數(shù)解析式,求出n的值,進而求出一次函數(shù)解析式(2)根據(jù)點A和點B的坐標及圖象特點,即可求出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍(3)由點A和點B的坐標求得三角形以BC 為底的高是10,從而求得三角形ABC 的面積【詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數(shù)的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數(shù)的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.26、(1)y=;y=x-2;(2)(0,0)或(4,0)【解析】試題分析:(1)利用待定系數(shù)法即可求得函數(shù)的解析式; (2)首先求得AB與x軸的交點,設交點是C,然后根據(jù)S△ABP=S△ACP+S△BCP即可列方程求得P的橫坐標.試題解析:(1)∵反比例函數(shù)y=(m≠0)的圖象過點A(1,1), ∴1= ∴m=1. ∴反比例函數(shù)的表達式為y=. ∵一次函數(shù)y=kx+b的圖象過點A(1,1)和B(0,-2). ∴, 解得:, ∴一次函數(shù)的表達式為y=x-2; (2)令y=0,∴x-2=0,x=2, ∴一次函數(shù)y=x-2的圖象與x軸的交點C的坐標為(2,0). ∵S△ABP=1, PC×1+PC×2=1. ∴PC=2, ∴點P的坐標為(0,0)、(4,0).【點睛】本題考查了待定系數(shù)法求函數(shù)的解析式以及三角形的面積的計算,正確根據(jù)S△ABP=S△ACP+S△BCP列方程是關鍵.27、(1)購買A種花木40棵,B種花木60棵;(2)當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.【解析】
(1)設購買A種花木x棵,B種花木y棵,根據(jù)“A,B兩種花木共100棵、購進A,B兩種花木剛好用去8000元”列方程組求解可得;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)“B花木的數(shù)量不少于A花木的數(shù)量”求得a的范圍,再設購買總費用為W,列出W關于a的解析式,利用一次函數(shù)的性質求解可得.【詳解】解析:(1)設購買A種花木x棵,B種花木y棵,根據(jù)題意,得:,解得:,答:購買A種花木40棵,B種花木60棵;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)題意,得:100﹣a≥a,解得:a≤50,設購買總費用為W,則W=50a+100(100﹣a)=﹣50a+10000,∵W隨a的增大而減小,∴當a=50時,W取得最小值,最小值為7500元,答:當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.考點:一元一次不等式的應用;二元一次方程組的應用.
相關試卷
這是一份2023-2024學年吉林省長春吉大附中力旺實驗中學九年級數(shù)學第一學期期末經(jīng)典試題含答案,共9頁。試卷主要包含了答題時請按要求用筆等內容,歡迎下載使用。
這是一份2023-2024學年吉林省長春吉大附中力旺實驗中學八年級數(shù)學第一學期期末達標檢測試題含答案,共7頁。試卷主要包含了下列各式,在下列各式中,計算正確的是,若,則等于,已知,那么的值為,下列各數(shù)中,是無理數(shù)等內容,歡迎下載使用。
這是一份吉林省長春市吉大附中力旺實驗學校2023-2024學年八年級數(shù)學第一學期期末預測試題含答案,共8頁。試卷主要包含了考生必須保證答題卡的整潔,是同類二次根式的是等內容,歡迎下載使用。

相關試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內免費重復下載