
1. 答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。
2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。
3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。
4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。
一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)
1.一個(gè)多邊形內(nèi)角和是外角和的2倍,它是( )
A.五邊形B.六邊形C.七邊形D.八邊形
2. “五一”期間,某市共接待海內(nèi)外游客約567000人次,將567000用科學(xué)記數(shù)法表示為( )
A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
3.在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學(xué)生參加決賽,他們決賽的成績各不相同,其中的一名學(xué)生想知道自己能否進(jìn)入前6名,不僅要了解自己的成績,還要了解這11名學(xué)生成績的( )
A.眾數(shù)B.中位數(shù)C.平均數(shù)D.方差
4.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.——蘇科版《數(shù)學(xué)》九年級(jí)(下冊(cè))P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實(shí)數(shù)根的情況是 ( )
A.有三個(gè)實(shí)數(shù)根B.有兩個(gè)實(shí)數(shù)根C.有一個(gè)實(shí)數(shù)根D.無實(shí)數(shù)根
5.第四屆濟(jì)南國際旅游節(jié)期間,全市共接待游客686000人次.將686000用科學(xué)記數(shù)法表示為( )
A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
6.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD.則∠BDE的度數(shù)為( )
A.76°B.74°C.72°D.70°
7.若,代數(shù)式的值是
A.0B.C.2D.
8.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )
A.AB=BEB.BE⊥DCC.∠ADB=90°D.CE⊥DE
9.已知關(guān)于x的方程x2+3x+a=0有一個(gè)根為﹣2,則另一個(gè)根為( )
A.5B.﹣1C.2D.﹣5
10.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個(gè)蓄水池以固定的流量注水,下面能大致表示水的最大深度與時(shí)間之間的關(guān)系的圖象是( )
A.B.C.D.
二、填空題(共7小題,每小題3分,滿分21分)
11.因式分解:x2﹣4= .
12.如圖,AB是半圓O的直徑,E是半圓上一點(diǎn),且OE⊥AB,點(diǎn)C為的中點(diǎn),則∠A=__________°.
13.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點(diǎn)B,C,E在同一條直線上,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),則CH的長為________.
14.如圖,在圓O中,AB為直徑,AD為弦,過點(diǎn)B的切線與AD的延長線交于點(diǎn)C,AD=DC,則∠C=________度.
15.如圖,將一對(duì)直角三角形卡片的斜邊AC重合擺放,直角頂點(diǎn)B,D在AC的兩側(cè),連接BD,交AC于點(diǎn)O,取AC,BD的中點(diǎn)E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.
16.若正六邊形的邊長為2,則此正六邊形的邊心距為______.
17.關(guān)于x的一元二次方程ax2﹣x﹣=0有實(shí)數(shù)根,則a的取值范圍為________.
三、解答題(共7小題,滿分69分)
18.(10分)如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.
(Ⅰ)△ABC的面積等于_____;
(Ⅱ)若四邊形DEFG是正方形,且點(diǎn)D,E在邊CA上,點(diǎn)F在邊AB上,點(diǎn)G在邊BC上,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)E,點(diǎn)G,并簡要說明點(diǎn)E,點(diǎn)G的位置是如何找到的(不要求證明)_____.
19.(5分)已知:如圖,E,F(xiàn)是?ABCD的對(duì)角線AC上的兩點(diǎn),BE∥DF.
求證:AF=CE.
20.(8分)華聯(lián)超市準(zhǔn)備代銷一款運(yùn)動(dòng)鞋,每雙的成本是170元,為了合理定價(jià),投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價(jià)是200元時(shí),每天的銷售量是40雙,而銷售單價(jià)每降低1元,每天就可多售出5雙,設(shè)每雙降低x元(x為正整數(shù)),每天的銷售利潤為y元.求y與x的函數(shù)關(guān)系式;每雙運(yùn)動(dòng)鞋的售價(jià)定為多少元時(shí),每天可獲得最大利潤?最大利潤是多少?
21.(10分)計(jì)算:(﹣2)0++4cs30°﹣|﹣|.
22.(10分)在平面直角坐標(biāo)系xOy中,若拋物線頂點(diǎn)A的橫坐標(biāo)是,且與y軸交于點(diǎn),點(diǎn)P為拋物線上一點(diǎn).
求拋物線的表達(dá)式;
若將拋物線向下平移4個(gè)單位,點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為如果,求點(diǎn)Q的坐標(biāo).
23.(12分)小明隨機(jī)調(diào)查了若干市民租用共享單車的騎車時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:這項(xiàng)被調(diào)查的總?cè)藬?shù)是多少人?試求表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時(shí)租用共享單車情況,請(qǐng)用列表或畫樹狀圖的方法求出恰好選中甲的概率.
24.(14分)風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
參考答案
一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)
1、B
【解析】
多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設(shè)這個(gè)多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個(gè)關(guān)于n的方程,從而求出邊數(shù)n的值.
【詳解】
設(shè)這個(gè)多邊形是n邊形,根據(jù)題意得:
(n﹣2)×180°=2×310°
解得:n=1.
故選B.
【點(diǎn)睛】
本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問題就可以轉(zhuǎn)化為解方程的問題來解決.
2、C
【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值≥1時(shí),n是非負(fù)數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).
【詳解】
567000=5.67×105,
【點(diǎn)睛】
此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.
3、B
【解析】
解:11人成績的中位數(shù)是第6名的成績.參賽選手要想知道自己是否能進(jìn)入前6名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.
故選B.
【點(diǎn)睛】
本題考查統(tǒng)計(jì)量的選擇,掌握中位數(shù)的意義是本題的解題關(guān)鍵.
4、C
【解析】
試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點(diǎn)情況.
因?yàn)楹瘮?shù)與函數(shù)的圖象只有一個(gè)交點(diǎn)
所以方程只有一個(gè)實(shí)數(shù)根
故選C.
考點(diǎn):函數(shù)的圖象
點(diǎn)評(píng):函數(shù)的圖象問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見題,在壓軸題中比較常見,要特別注意.
5、D
【解析】
根據(jù)科學(xué)記數(shù)法的表示形式(a×10n,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù))可得:
686000=6.86×105,
故選:D.
6、B
【解析】
直接利用三角形內(nèi)角和定理得出∠ABC的度數(shù),再利用翻折變換的性質(zhì)得出∠BDE的度數(shù).
【詳解】
解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故選:B.
【點(diǎn)睛】
此題主要考查了三角形內(nèi)角和定理,正確掌握三角形內(nèi)角和定理是解題關(guān)鍵.
7、D
【解析】
由可得,整體代入到原式即可得出答案.
【詳解】
解:,
,
則原式.
故選:D.
【點(diǎn)睛】
本題主要考查整式的化簡求值,熟練掌握整式的混合運(yùn)算順序和法則及代數(shù)式的求值是解題的關(guān)鍵.
8、B
【解析】
先證明四邊形DBCE為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.
【詳解】
∵四邊形ABCD為平行四邊形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四邊形BCED為平行四邊形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項(xiàng)錯(cuò)誤;
B、∵對(duì)角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項(xiàng)正確;
C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項(xiàng)錯(cuò)誤;
D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項(xiàng)錯(cuò)誤,
故選B.
【點(diǎn)睛】
本題考查了平行四邊形的性質(zhì)與判定,矩形的判定等,熟練掌握相關(guān)的判定定理與性質(zhì)定理是解題的關(guān)鍵.
9、B
【解析】
根據(jù)關(guān)于x的方程x2+3x+a=0有一個(gè)根為-2,可以設(shè)出另一個(gè)根,然后根據(jù)根與系數(shù)的關(guān)系可以求得另一個(gè)根的值,本題得以解決.
【詳解】
∵關(guān)于x的方程x2+3x+a=0有一個(gè)根為-2,設(shè)另一個(gè)根為m,
∴-2+m=?,
解得,m=-1,
故選B.
10、C
【解析】
首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關(guān)系變?yōu)橄瓤旌舐?br>【詳解】
根據(jù)題意和圖形的形狀,可知水的最大深度h與時(shí)間t之間的關(guān)系分為兩段,先快后慢。
故選:C.
【點(diǎn)睛】
此題考查函數(shù)的圖象,解題關(guān)鍵在于觀察圖形
二、填空題(共7小題,每小題3分,滿分21分)
11、(x+2)(x-2).
【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).
考點(diǎn):因式分解-運(yùn)用公式法
12、22.5
【解析】
連接半徑OC,先根據(jù)點(diǎn)C為的中點(diǎn),得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.
【詳解】
連接OC,
∵OE⊥AB,
∴∠EOB=90°,
∵點(diǎn)C為的中點(diǎn),
∴∠BOC=45°,
∵OA=OC,
∴∠A=∠ACO=×45°=22.5°,
故答案為:22.5°.
【點(diǎn)睛】
本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.
13、
【解析】
連接AC、CF,GE,根據(jù)菱形性質(zhì)求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.
【詳解】
解:如圖,連接AC、CF、GE,CF和GE相交于O點(diǎn)
∵在菱形ABCD中, ,BC=1,
∴,AC=1,
∴
∵在菱形CEFG中,是它的對(duì)角線,
∴,
∴,
∴
∵==,
∴在,
又∵H是AF的中點(diǎn)
∴.
【點(diǎn)睛】
本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),菱形的性質(zhì),勾股定理,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.
14、1
【解析】
利用圓周角定理得到∠ADB=90°,再根據(jù)切線的性質(zhì)得∠ABC=90°,然后根據(jù)等腰三角形的判定方法得到△ABC為等腰直角三角形,從而得到∠C的度數(shù).
【詳解】
解:∵AB為直徑,
∴∠ADB=90°,
∵BC為切線,
∴AB⊥BC,
∴∠ABC=90°,
∵AD=CD,
∴△ABC為等腰直角三角形,
∴∠C=1°.
故答案為1.
【點(diǎn)睛】
本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.也考查了等腰直角三角形的判定與性質(zhì).
15、.
【解析】
先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對(duì)角線可得出BD=, BF=BD=, EF==.
【詳解】
∵∠ABC=∠ADC,
∴A,B,C,D四點(diǎn)共圓,
∴AC為直徑,
∵E為AC的中點(diǎn),
∴E為此圓圓心,
∵F為弦BD中點(diǎn),
∴EF⊥BD,
連接BE,∴BE=AC===;
作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(AAS),
∴AM=CN,DM=DN,
∵∠DMB=∠DNC=∠ABC=90°,
∴四邊形BNDM為矩形,
又∵DM=DN,
∴矩形BNDM為正方形,
∴BM=BN,
設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,
∴12-x=5+x,x=,BN=,
∵BD為正方形BNDM的對(duì)角線,
∴BD=BN=,BF=BD=,
∴EF===.
故答案為.
【點(diǎn)睛】
本題考查了正方形的性質(zhì)與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與全等三角形的性質(zhì)與應(yīng)用.
16、.
【解析】
連接OA、OB,根據(jù)正六邊形的性質(zhì)求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.
【詳解】
連接OA、OB、OC、OD、OE、OF,
∵正六邊形ABCDEF,
∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
∴△AOB是等邊三角形,
∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
在△OAM中,由勾股定理得:OM=.
17、a≥﹣1且a≠1
【解析】
利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個(gè)不等式的公共部分即可.
【詳解】
根據(jù)題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.
故答案為a≥﹣1且a≠1.
【點(diǎn)睛】
本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>1時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;當(dāng)△=1時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;當(dāng)△<1時(shí),方程無實(shí)數(shù)根.
三、解答題(共7小題,滿分69分)
18、6 作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G
【解析】
(1)根據(jù)三角形面積公式即可求解,(2)作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G,過G點(diǎn)作GD⊥AC于D,四邊形DEFG即為所求正方形.
【詳解】
解:(1)4×3÷2=6,故△ABC的面積等于6.
(2)如圖所示,作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G,四邊形DEFG即為所求正方形.
故答案為:6,作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G.
【點(diǎn)睛】
本題主要考查了作圖-應(yīng)用與設(shè)計(jì)作圖、三角形的面積以及正方形的性質(zhì)、角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)及正方形的性質(zhì)作出正確的圖形是解本題的關(guān)鍵.
19、參見解析.
【解析】
分析:先證∠ACB=∠CAD,再證出△BEC≌△DFA,從而得出CE=AF.
詳解:
證明:平行四邊形中,,,
.
又,
,
,
點(diǎn)睛:本題利用了平行四邊形的性質(zhì),全等三角形的判定和性質(zhì).
20、(1)y=﹣5x2+110x+1200;(2) 售價(jià)定為189元,利潤最大1805元
【解析】
利潤等于(售價(jià)﹣成本)×銷售量,根據(jù)題意列出表達(dá)式,借助二次函數(shù)的性質(zhì)求最大值即可;
【詳解】
(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;
(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,
∵拋物線開口向下,
∴當(dāng)x=11時(shí),y有最大值1805,
答:售價(jià)定為189元,利潤最大1805元;
【點(diǎn)睛】
本題考查實(shí)際應(yīng)用中利潤的求法,二次函數(shù)的應(yīng)用;能夠根據(jù)題意列出合理的表達(dá)式是解題的關(guān)鍵.
21、1
【解析】
分析:按照實(shí)數(shù)的運(yùn)算順序進(jìn)行運(yùn)算即可.
詳解:原式
=1.
點(diǎn)睛:本題考查實(shí)數(shù)的運(yùn)算,主要考查零次冪,負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及二次根式,熟練掌握各個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.
22、為;點(diǎn)Q的坐標(biāo)為或.
【解析】
依據(jù)拋物線的對(duì)稱軸方程可求得b的值,然后將點(diǎn)B的坐標(biāo)代入線可求得c的值,即可求得拋物線的表達(dá)式;由平移后拋物線的頂點(diǎn)在x軸上可求得平移的方向和距離,故此,然后由點(diǎn),軸可得到點(diǎn)Q和P關(guān)于x對(duì)稱,可求得點(diǎn)Q的縱坐標(biāo),將點(diǎn)Q的縱坐標(biāo)代入平移后的解析式可求得對(duì)應(yīng)的x的值,則可得到點(diǎn)Q的坐標(biāo).
【詳解】
拋物線頂點(diǎn)A的橫坐標(biāo)是,
,即,解得.
.
將代入得:,
拋物線的解析式為.
拋物線向下平移了4個(gè)單位.
平移后拋物線的解析式為,.
,
點(diǎn)O在PQ的垂直平分線上.
又軸,
點(diǎn)Q與點(diǎn)P關(guān)于x軸對(duì)稱.
點(diǎn)Q的縱坐標(biāo)為.
將代入得:,解得:或.
點(diǎn)Q的坐標(biāo)為或.
【點(diǎn)睛】
本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的平移規(guī)律、線段垂直平分線的性質(zhì),發(fā)現(xiàn)點(diǎn)Q與點(diǎn)P關(guān)于x軸對(duì)稱,從而得到點(diǎn)Q的縱坐標(biāo)是解題的關(guān)鍵.
23、(1)50;(2)108°;(3).
【解析】
分析:(1)根據(jù)B組的人數(shù)和所占的百分比,即可求出這次被調(diào)查的總?cè)藬?shù),從而補(bǔ)全統(tǒng)計(jì)圖;用360乘以A組所占的百分比,求出A組的扇形圓心角的度數(shù),再用總?cè)藬?shù)減去A、B、D組的人數(shù),求出C組的人數(shù);(2)畫出樹狀圖,由概率公式即可得出答案.
本題解析:解:(1)調(diào)查的總?cè)藬?shù)是:19÷38%=50(人).C組的人數(shù)有50-15-19-4=12(人),補(bǔ)全條形圖如圖所示.
(2)畫樹狀圖如下.共有12種等可能的結(jié)果,恰好選中甲的結(jié)果有6種,∴P(恰好選中甲)=.
點(diǎn)睛:本題考查了列表法與樹狀圖、條形統(tǒng)計(jì)圖的綜合運(yùn)用.熟練掌握畫樹狀圖法,讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.
24、1米.
【解析】
試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設(shè)AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關(guān)于x的方程,解之可得.
試題解析:解:如圖,作BE⊥DH于點(diǎn)E,則GH=BE、BG=EH=10,設(shè)AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.
答:塔桿CH的高為1米.
點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,解答本題要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.
這是一份黃埔區(qū)廣附市級(jí)名校2023屆中考數(shù)學(xué)全真模擬試卷含解析,共21頁。
這是一份廣東省黃埔區(qū)廣附市級(jí)名校2022年中考數(shù)學(xué)全真模擬試題含解析,共18頁。試卷主要包含了計(jì)算的結(jié)果為,下列說法中,正確的是等內(nèi)容,歡迎下載使用。
這是一份廣東省黃埔區(qū)廣附2021-2022學(xué)年中考數(shù)學(xué)仿真試卷含解析,共16頁。試卷主要包含了下列圖形是中心對(duì)稱圖形的是,﹣6的倒數(shù)是等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功