



2021-2022學年廣西省蒙山縣重點達標名校中考數(shù)學模擬試題含解析
展開
這是一份2021-2022學年廣西省蒙山縣重點達標名校中考數(shù)學模擬試題含解析,共20頁。試卷主要包含了下列調(diào)查中適宜采用抽樣方式的是等內(nèi)容,歡迎下載使用。
2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。 一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數(shù)的統(tǒng)計結果如下表:班級參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學分析上表后得出如下結論:①甲、乙兩班學生的平均成績相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結論中,正確的是( ?。?/span>A.①② B.②③ C.①③ D.①②③2.小明解方程的過程如下,他的解答過程中從第( ?。┎介_始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④3.已知關于x的一元二次方程mx2+2x-1=0有兩個不相等的實數(shù)根,則m的取值范圍是( ).A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>14.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為( )A.6 B.9 C.11 D.無法計算5.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為( )A.1:2 B.1:3 C.1:4 D.1:16.下列調(diào)查中適宜采用抽樣方式的是( ?。?/span>A.了解某班每個學生家庭用電數(shù)量 B.調(diào)查你所在學校數(shù)學教師的年齡狀況C.調(diào)查神舟飛船各零件的質(zhì)量 D.調(diào)查一批顯像管的使用壽命7.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側部分是上升的8.已知一個多邊形的內(nèi)角和是1080°,則這個多邊形是( )A.五邊形 B.六邊形 C.七邊形 D.八邊形9.如圖,按照三視圖確定該幾何體的側面積是(單位:cm)( )A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm210.在實數(shù),,,中,其中最小的實數(shù)是( ?。?/span>A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:a3-a=______.12.閱讀理解:引入新數(shù),新數(shù)滿足分配律,結合律,交換律.已知,那么________.13.對于函數(shù),我們定義(m、n為常數(shù)).例如,則.已知:.若方程有兩個相等實數(shù)根,則m的值為__________.14.二次函數(shù)y=(a-1)x2-x+a2-1 的圖象經(jīng)過原點,則a的值為______.15.如圖,正△ABC 的邊長為 2,頂點 B、C 在半徑為 的圓上,頂點 A在圓內(nèi),將正△ABC 繞點 B 逆時針旋轉,當點 A 第一次落在圓上時,則點 C 運動的路線長為 (結果保留π);若 A 點落在圓上記做第 1 次旋轉,將△ABC 繞點 A 逆時針旋轉,當點 C 第一次落在圓上記做第 2 次旋轉,再繞 C 將△ABC 逆時針旋轉,當點 B 第一次落在圓上,記做第 3 次旋轉……,若此旋轉下去,當△ABC 完成第 2017 次旋轉時,BC 邊共回到原來位置 次.16.在平面直角坐標系xOy中,位于第一象限內(nèi)的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中x滿足x2﹣x﹣1=1.18.(8分)計算:4cos30°﹣+20180+|1﹣|19.(8分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),① 求拋物線的解析式;② P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標;(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標. 20.(8分)下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據(jù)小星同學設計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB (填推理的依據(jù))∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB (填推理的依據(jù))∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l (填推理的依據(jù))21.(8分)某商店經(jīng)營兒童益智玩具,已知成批購進時的單價是20元.調(diào)查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件玩具售價不能高于40元.設每件玩具的銷售單價上漲了x元時(x為正整數(shù)),月銷售利潤為y元.求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍.每件玩具的售價定為多少元時,月銷售利潤恰為2520元?每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?22.(10分)如圖,在⊙O中,AB是直徑,點C是圓上一點,點D是弧BC中點,過點D作⊙O切線DF,連接AC并延長交DF于點E.(1)求證:AE⊥EF;(2)若圓的半徑為5,BD=6 求AE的長度.23.(12分)如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.24.某同學報名參加學校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠,跳高(分別用 T1、T2 表示).(1)該同學從 5 個項目中任選一個,恰好是田賽項目的概率 P 為 ;(2)該同學從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;(3)該同學從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為 .
參考答案 一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數(shù)、中位數(shù)、方差等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、A【解析】
根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.3、A【解析】
∵一元二次方程mx2+2x-1=0有兩個不相等的實數(shù)根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當△=b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;(2)當△=b2﹣4ac=0時,方程有有兩個相等的實數(shù)根;(3)當△=b2﹣4ac<0時,方程沒有實數(shù)根.4、B【解析】
有旋轉的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時, S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3× ×2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質(zhì):旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3 倍是解題的關鍵.5、B【解析】
根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質(zhì)求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質(zhì).6、D【解析】
根據(jù)全面調(diào)查與抽樣調(diào)查的特點對各選項進行判斷.【詳解】解:了解某班每個學生家庭用電數(shù)量可采用全面調(diào)查;調(diào)查你所在學校數(shù)學教師的年齡狀況可采用全面調(diào)查;調(diào)查神舟飛船各零件的質(zhì)量要采用全面調(diào)查;而調(diào)查一批顯像管的使用壽命要采用抽樣調(diào)查.故選:D.【點睛】本題考查了全面調(diào)查與抽樣調(diào)查:全面調(diào)查與抽樣調(diào)查的優(yōu)缺點:全面調(diào)查收集的到數(shù)據(jù)全面、準確,但一般花費多、耗時長,而且某些調(diào)查不宜用全面調(diào)查.抽樣調(diào)查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關系到對總體估計的準確程度.7、C【解析】當x=-2時,y=0,
∴拋物線過(-2,0),
∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;
當x=0時,y=6,
∴拋物線與y軸的交點坐標為(0,6),故B正確;
當x=0和x=1時,y=6,
∴對稱軸為x=,故C錯誤;
當x<時,y隨x的增大而增大,
∴拋物線在對稱軸左側部分是上升的,故D正確;
故選C.8、D【解析】
根據(jù)多邊形的內(nèi)角和=(n﹣2)?180°,列方程可求解.【詳解】設所求多邊形邊數(shù)為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點睛】本題考查根據(jù)多邊形的內(nèi)角和計算公式求多邊形的邊數(shù),解答時要會根據(jù)公式進行正確運算、變形和數(shù)據(jù)處理.9、A【解析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側面積=πrl=π×6×4=14πcm1.故選:A.【點睛】此題考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.10、B【解析】
由正數(shù)大于一切負數(shù),負數(shù)小于0,正數(shù)大于0,兩個負數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,
∴其中最小的實數(shù)為-2;
故選:B.【點睛】本題考查了實數(shù)的大小比較,關鍵是掌握:正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù)絕對值大的反而小. 二、填空題(本大題共6個小題,每小題3分,共18分)11、a(a-1)(a + 1)【解析】分析:先提取公因式a,再對余下的多項式利用平方差公式繼續(xù)分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).12、2【解析】
根據(jù)定義即可求出答案.【詳解】由題意可知:原式=1-i2=1-(-1)=2故答案為2【點睛】本題考查新定義型運算,解題的關鍵是正確理解新定義.13、 【解析】分析:根據(jù)題目中所給定義先求,再利用根與系數(shù)關系求m值.詳解:由所給定義知,,若=0,解得m=.點睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項系數(shù)、一次項系數(shù)和常數(shù)項.
△>0說明方程有兩個不同實數(shù)解,△=0說明方程有兩個相等實數(shù)解,△<0說明方程無實數(shù)解.實際應用中,有兩種題型(1)證明方程實數(shù)根問題,需要對△的正負進行判斷,可能是具體的數(shù)直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.14、-1【解析】
將(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.【詳解】解:∵二次函數(shù)y=(a-1)x2-x+a2-1 的圖象經(jīng)過原點, ∴a2-1=2, ∴a=±1, ∵a-1≠2, ∴a≠1, ∴a的值為-1. 故答案為-1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,圖象過原點,可得出x=2時,y=2.15、,1.【解析】
首先連接OA′、OB、OC,再求出∠C′BC的大小,進而利用弧長公式問題即可解決.因為△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,推出當△ABC完成第2017次旋轉時,BC邊共回到原來位置1次.【詳解】如圖,連接OA′、OB、OC.∵OB=OC=,BC=2, ∴△OBC是等腰直角三角形,∴∠OBC=45°;同理可證:∠OBA′=45°,∴∠A′BC=90°;∵∠ABC=60°,∴∠A′BA=90°-60°=30°,∴∠C′BC=∠A′BA=30°,∴當點A第一次落在圓上時,則點C運動的路線長為:.∵△ABC是三邊在正方形CBA′C″上,BC邊每12次回到原來位置,2017÷12=1.08,∴當△ABC完成第2017次旋轉時,BC邊共回到原來位置1次,故答案為:,1.【點睛】本題考查軌跡、等邊三角形的性質(zhì)、旋轉變換、規(guī)律問題等知識,解題的關鍵是循環(huán)利用數(shù)形結合的思想解決問題,循環(huán)從特殊到一般的探究方法,所以中考填空題中的壓軸題.16、.【解析】
依據(jù)點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規(guī)律. 三、解答題(共8題,共72分)17、2.【解析】
根據(jù)分式的運算法則進行計算化簡,再將x2=x+2代入即可.【詳解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.18、【解析】
先代入三角函數(shù)值、化簡二次根式、計算零指數(shù)冪、取絕對值符號,再計算乘法,最后計算加減可得.【詳解】原式===【點睛】本題主要考查實數(shù)的混合運算,解題的關鍵是熟練掌握實數(shù)的混合運算順序和運算法則及零指數(shù)冪、絕對值和二次根式的性質(zhì).19、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標代入解析式,解方程組即可得到結論;②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA ,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進而得到.設EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標,進而求出CE的直線解析式,聯(lián)立解方程組即可得到結論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴ ②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA ,OC⊥AD,∴ ∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設EN=3x,則CN=4x. ∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE= ,E(,0).CE的直線解析式為:,,解得:.點P的橫坐標 .(2)作DI⊥x軸,垂足為I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴,∴,∴.令y=0,得:.∴,∴.∵,∴,解得:yD=0或-1.∵D為x軸下方一點,∴,∴D的縱坐標-1 .點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)解析式、性質(zhì),相似三角形的判定與性質(zhì),根與系數(shù)的關系.綜合性比較強,難度較大.20、 (1)詳見解析;(2)(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).【解析】
(1)根據(jù)角平分線的尺規(guī)作圖即可得;
(2)分別根據(jù)等腰三角形的性質(zhì)、三角形外角的性質(zhì)和平行線的判定求解可得.【詳解】解:(1)如圖所示,直線AP即為所求.(2)證明:∵AB=AC,∴∠ABC=∠ACB(等邊對等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性質(zhì)),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,兩直線平行),故答案為(等邊對等角),(三角形外角性質(zhì)),(同位角相等,兩直線平行).【點睛】本題主要考查作圖能力,解題的關鍵是掌握角平分線的尺規(guī)作圖、等腰三角形的性質(zhì)、三角形外角的性質(zhì)和平行線的判定.21、(1)y=﹣10x2+130x+2300,0<x≤10且x為正整數(shù);(2)每件玩具的售價定為32元時,月銷售利潤恰為2520元;(3)每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【解析】
(1)根據(jù)題意知一件玩具的利潤為(30+x-20)元,月銷售量為(230-10x),然后根據(jù)月銷售利潤=一件玩具的利潤×月銷售量即可求出函數(shù)關系式.(2)把y=2520時代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成頂點式,求得當x=6.5時,y有最大值,再根據(jù)0<x≤10且x為正整數(shù),分別計算出當x=6和x=7時y的值即可.【詳解】(1)根據(jù)題意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自變量x的取值范圍是:0<x≤10且x為正整數(shù);(2)當y=2520時,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合題意,舍去) 當x=2時,30+x=32(元)答:每件玩具的售價定為32元時,月銷售利潤恰為2520元.(3)根據(jù)題意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴當x=6.5時,y有最大值為2722.5,∵0<x≤10且x為正整數(shù),∴當x=6時,30+x=36,y=2720(元),當x=7時,30+x=37,y=2720(元),答:每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【點睛】本題主要考查了二次函數(shù)的實際應用,解題的關鍵是分析題意,找到關鍵描述語,求出函數(shù)的解析式,用到的知識點是二次函數(shù)的性質(zhì)和解一元二次方程.22、(1)詳見解析;(2)AE=6.1.【解析】
(1)連接OD,利用切線的性質(zhì)和三角形的內(nèi)角和證明OD∥EA,即可證得結論;(2)利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)連接OD,∵EF是⊙O的切線,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵點D是弧BC中點,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直徑,∴∠ADB=90°,∵圓的半徑為5,BD=6 ∴AB=10,BD=6,在Rt△ADB中,,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴,即,解得:AE=6.1.【點睛】本題考查了切線的性質(zhì),相似三角形的判定和性質(zhì),勾股定理的應用以及圓周角定理,關鍵是利用切線的性質(zhì)和相似三角形判定和性質(zhì)進行解答.23、【解析】
先根據(jù)平行線的性質(zhì)證明△ADE∽△FGH,再由線段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【詳解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴ ,∵DE∥BC ,FG∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴設BG=2k,GH=4k,HC=1k,∴DF=2k,FE=1k,∴DE=5k,∴.【點睛】本題考查了平行線的性質(zhì)和三角形相似的判定和相似比.24、(1);(1) ;(3);【解析】
(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結果數(shù),再找出一個徑賽項目和一個田賽項目的結果數(shù),然后根據(jù)概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結果數(shù),然后根據(jù)概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結果數(shù),其中一個徑賽項目和一個田賽項目的結果數(shù)為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結果數(shù)為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.
相關試卷
這是一份廣西省崇左重點達標名校2021-2022學年中考四模數(shù)學試題含解析,共18頁。試卷主要包含了考生必須保證答題卡的整潔,的相反數(shù)是等內(nèi)容,歡迎下載使用。
這是一份甘肅省鎮(zhèn)原縣重點達標名校2021-2022學年中考數(shù)學模擬試題含解析,共25頁。試卷主要包含了考生要認真填寫考場號和座位序號,下列算式的運算結果正確的是等內(nèi)容,歡迎下載使用。
這是一份2022年廣西省蒙山縣重點達標名校中考數(shù)學最后沖刺濃縮精華卷含解析,共21頁。試卷主要包含了答題時請按要求用筆,下列運算正確的是,﹣23的相反數(shù)是等內(nèi)容,歡迎下載使用。

相關試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內(nèi)免費重復下載