?2021-2022中考數(shù)學(xué)模擬試卷
注意事項:
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。
2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。
3.考試結(jié)束后,將本試卷和答題卡一并交回。

一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)
1.如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②△OAE∽△OPA;③當(dāng)正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結(jié)論的個數(shù)是( )

A.0 B.1 C.2 D.3
2.若一次函數(shù)y=(2m﹣3)x﹣1+m的圖象不經(jīng)過第三象限,則m的取值范圖是( ?。?br /> A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
3.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為( ?。?br />
A.50m B.25m C.(50﹣)m D.(50﹣25)m
4.有四包真空包裝的火腿腸,每包以標(biāo)準(zhǔn)質(zhì)量450g為基準(zhǔn),超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù).下面的數(shù)據(jù)是記錄結(jié)果,其中與標(biāo)準(zhǔn)質(zhì)量最接近的是( ?。?br /> A.+2 B.﹣3 C.+4 D.﹣1
5.若,則的值為( )
A.12 B.2 C.3 D.0
6.某藥品經(jīng)過兩次降價,每瓶零售價由168元降為108元,已知兩次降價的百分率相同,設(shè)每次降價的百分率為x,根據(jù)題意列方程得(  )
A.168(1﹣x)2=108 B.168(1﹣x2)=108
C.168(1﹣2x)=108 D.168(1+x)2=108
7.已知x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為( ?。?br /> A.4 B.﹣4 C.3 D.﹣3
8.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC=( )

A.1 B.2 C.3 D.4
9.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設(shè)AP=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是( )

A.PD B.PB C.PE D.PC
10.的算術(shù)平方根是( )
A.9 B.±9 C.±3 D.3
二、填空題(共7小題,每小題3分,滿分21分)
11.某校準(zhǔn)備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時成績的平均數(shù)(單位:分)及方差S2,如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應(yīng)選的組是_____.






7
8
8
7
s2
1
1.2
0.9
1.8

12.如圖,中,,,,,平分,與相交于點,則的長等于_____.

13.圖甲是小明設(shè)計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內(nèi)部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm

14.分解因式:2a2﹣2=_____.
15.方程的解是__________.
16.若數(shù)據(jù)2、3、5、3、8的眾數(shù)是a,則中位數(shù)是b,則a﹣b等于_____.
17.已知關(guān)于的一元二次方程的兩個實數(shù)根分別是x =-2,x =4,則的值為________.
三、解答題(共7小題,滿分69分)
18.(10分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標(biāo),某初中學(xué)校了解學(xué)生的創(chuàng)新意識,組織了全校學(xué)生參加創(chuàng)新能力大賽,從中抽取了部分學(xué)生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學(xué)生的總?cè)藬?shù)是   人,扇形C的圓心角是   °;補全頻數(shù)直方圖;該校共有2200名學(xué)生,若成績在70分以下(不含70分)的學(xué)生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學(xué)生約有多少人?

19.(5分)如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點,且BP=2CP.
(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);
(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;
(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,△PFB能否由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)

20.(8分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.
(1)求證:AB=BC;
(2)如果AB=5,tan∠FAC=,求FC的長.

21.(10分)如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G, GB=GC.
(1)求證:四邊形ABCD是矩形;
(1)若△GEF的面積為1.
①求四邊形BCFE的面積;
②四邊形ABCD的面積為  ?。?br />
22.(10分)校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側(cè)取點A、B,使∠CAD=30,∠CBD=60.
(1)求AB的長(精確到0.1米,參考數(shù)據(jù):);
(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.

23.(12分)已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△OAB的頂點A、B的坐標(biāo)分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線于點C,連結(jié)AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結(jié)AD、CD.
(1)求證:△ABC≌△AOD.
(2)設(shè)△ACD的面積為,求關(guān)于的函數(shù)關(guān)系式.
(3)若四邊形ABCD恰有一組對邊平行,求的值.

24.(14分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.
(1)求證:DF是BF和CF的比例中項;
(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.




參考答案

一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)
1、C
【解析】
由四邊形ABCD是正方形,得到AD=BC, 根據(jù)全等三角形的性質(zhì)得到∠P=∠Q,根據(jù)余角的性質(zhì)得到AQ⊥DP;故①正確;根據(jù)勾股定理求出直接用余弦可求出.
【詳解】
詳解:∵四邊形ABCD是正方形,
∴AD=BC,
∵BP=CQ,
∴AP=BQ,
在△DAP與△ABQ中,
∴△DAP≌△ABQ,
∴∠P=∠Q,



∴AQ⊥DP;
故①正確;
②無法證明,故錯誤.
∵BP=1,AB=3,



∴ 故③正確,
故選C.
【點睛】
考查正方形的性質(zhì),三角形全等的判定與性質(zhì),勾股定理,銳角三角函數(shù)等,綜合性比較強,對學(xué)生要求較高.
2、B
【解析】
根據(jù)一次函數(shù)的性質(zhì),根據(jù)不等式組即可解決問題;
【詳解】
∵一次函數(shù)y=(2m-3)x-1+m的圖象不經(jīng)過第三象限,
∴,
解得1≤m<.
故選:B.
【點睛】
本題考查一次函數(shù)的圖象與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.
3、C
【解析】
如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB =MN=CM﹣CN,即可得到結(jié)論.
【詳解】
如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.
則AB=MN,AM=BN.
在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
則AB=MN=(50﹣)m.
故選C.

【點睛】
本題考查了解直角三角形的應(yīng)用.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.
4、D
【解析】
試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,
由于|-1|最小,所以從輕重的角度看,質(zhì)量是-1的工件最接近標(biāo)準(zhǔn)工件.
故選D.
5、A
【解析】
先根據(jù)得出,然后利用提公因式法和完全平方公式對進行變形,然后整體代入即可求值.
【詳解】
∵,
∴,
∴.
故選:A.
【點睛】
本題主要考查整體代入法求代數(shù)式的值,掌握完全平方公式和整體代入法是解題的關(guān)鍵.
6、A
【解析】
設(shè)每次降價的百分率為x,根據(jù)降價后的價格=降價前的價格(1-降價的百分率),則第一次降價后的價格是168(1-x),第二次后的價格是168(1-x)2,據(jù)此即可列方程求解.
【詳解】
設(shè)每次降價的百分率為x,
根據(jù)題意得:168(1-x)2=1.
故選A.
【點睛】
此題主要考查了一元二次方程的應(yīng)用,關(guān)鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關(guān)系,列出方程即可.
7、A
【解析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系和整體代入思想即可得解.
【詳解】
∵x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,
∴x1+x2=﹣b,x1x2=﹣3,
∴x1+x2﹣3x1x2=﹣b+9=5,
解得b=4.
故選A.
【點睛】
本題主要考查一元二次方程的根與系數(shù)的關(guān)系(韋達定理),
韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=,x1x2=.
8、B
【解析】
先利用三角函數(shù)計算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長.
【詳解】
解:在Rt△ABO中,sin∠OAB===,
∴∠OAB=60°,
∵直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點C,
∴∠CAB=30°,OC⊥AC,
∴∠OAC=60°﹣30°=30°,
在Rt△OAC中,OC=OA=1.
故選B.
【點睛】
本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).
9、C
【解析】
觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當(dāng)EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當(dāng)AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.
點睛:本題考查了動點問題的函數(shù)圖象,對于此類問題來說是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.
10、D
【解析】
根據(jù)算術(shù)平方根的定義求解.
【詳解】
∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算術(shù)平方根是1.
即的算術(shù)平方根是1.
故選:D.
【點睛】
考核知識點:算術(shù)平方根.理解定義是關(guān)鍵.

二、填空題(共7小題,每小題3分,滿分21分)
11、丙
【解析】
先比較平均數(shù)得到乙組和丙組成績較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.
【詳解】
因為乙組、丙組的平均數(shù)比甲組、丁組大,而丙組的方差比乙組的小,
所以丙組的成績比較穩(wěn)定,
所以丙組的成績較好且狀態(tài)穩(wěn)定,應(yīng)選的組是丙組.
故答案為丙.
【點睛】
本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.
12、3
【解析】
如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長,進而可得GH的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長,根據(jù)DE=DH-EH即可得答案.
【詳解】
如圖,延長CE、DE,分別交AB于G、H,
∵∠BAD=∠ADE=60°,
∴△ADH是等邊三角形,
∴DH=AD=AH=5,∠DHA=60°,
∵AC=BC,CE平分∠ACB,∠ACB=90°,
∴AB==8,AG=AB=4,CG⊥AB,
∴GH=AH=AG=5-4=1,
∵∠DHA=60°,
∴∠GEH=30°,
∴EH=2GH=2
∴DE=DH-EH=5=2=3.

故答案為:3
【點睛】
本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.
13、
【解析】
試題分析:根據(jù),EF=4可得:AB=和BC的長度,根據(jù)陰影部分的面積為54可得陰影部分三角形的高,然后根據(jù)菱形的性質(zhì)可以求出小菱形的邊長為,則菱形的周長為:×4=.
考點:菱形的性質(zhì).
14、2(a+1)(a﹣1).
【解析】
先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解.
【詳解】
解:2a2﹣2,
=2(a2﹣1),
=2(a+1)(a﹣1).
【點睛】
本題考查了提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.
15、.
【解析】
根據(jù)解分式方程的步驟依次計算可得.
【詳解】
解:去分母,得:,
解得:,
當(dāng)時,,
所以是原分式方程的解,
故答案為:.
【點睛】
本題主要考查解分式方程,解題的關(guān)鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論.
16、2
【解析】
將數(shù)據(jù)排序后,位置在最中間的數(shù)值。即將數(shù)據(jù)分成兩部分,一部分大于該數(shù)值,一部分小于該數(shù)值。中位數(shù)的位置:當(dāng)樣本數(shù)為奇數(shù)時,中位數(shù)=(N+1)/2 ; 當(dāng)樣本數(shù)為偶數(shù)時,中位數(shù)為N/2與1+N/2的均值;眾數(shù)是在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。根據(jù)定義即可算出.
【詳解】
2、1、5、1、8中只有1出現(xiàn)兩次,其余都是1次,得眾數(shù)為a=1.
2、1、5、1、8重新排列2、1、1、5、8,中間的數(shù)是1,中位數(shù)b=1.
∴a﹣b=1-1=2.
故答案為:2.
【點睛】
中位數(shù)與眾數(shù)的定義.
17、-10
【解析】
根據(jù)根與系數(shù)的關(guān)系得出-2+4=-m,-2×4=n,求出即可.
【詳解】
∵關(guān)于x的一元二次方程的兩個實數(shù)根分別為x =-2,x =4,
∴?2+4=?m,?2×4=n,
解得:m=?2,n=?8,
∴m+n=?10,
故答案為:-10
【點睛】
此題考查根與系數(shù)的關(guān)系,掌握運算法則是解題關(guān)鍵

三、解答題(共7小題,滿分69分)
18、(1)300、144;(2)補全頻數(shù)分布直方圖見解析;(3)該校創(chuàng)新意識不強的學(xué)生約有528人.
【解析】
(1)由D組頻數(shù)及其所占比例可得總?cè)藬?shù),用360°乘以C組人數(shù)所占比例可得;
(2)用總?cè)藬?shù)分別乘以A、B組的百分比求得其人數(shù),再用總?cè)藬?shù)減去A、B、C、D的人數(shù)求得E組的人數(shù)可得;
(3)用總?cè)藬?shù)乘以樣本中A、B組的百分比之和可得.
【詳解】
解:(1)抽取學(xué)生的總?cè)藬?shù)為78÷26%=300人,扇形C的圓心角是360°×=144°,
故答案為300、144;
(2)A組人數(shù)為300×7%=21人,B組人數(shù)為300×17%=51人,
則E組人數(shù)為300﹣(21+51+120+78)=30人,
補全頻數(shù)分布直方圖如下:

(3)該校創(chuàng)新意識不強的學(xué)生約有2200×(7%+17%)=528人.
【點睛】
考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了用樣本估計總體.
19、(1)作圖見解析;(2)EB是平分∠AEC,理由見解析; (3)△PFB能由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.
【解析】
【分析】(1)根據(jù)作線段的垂直平分線的方法作圖即可得出結(jié)論;
(2)先求出DE=CE=1,進而判斷出△ADE≌△BCE,得出∠AED=∠BEC,再用銳角三角函數(shù)求出∠AED,即可得出結(jié)論;
(3)先判斷出△AEP≌△FBP,即可得出結(jié)論.
【詳解】(1)依題意作出圖形如圖①所示;

(2)EB是平分∠AEC,理由:
∵四邊形ABCD是矩形,
∴∠C=∠D=90°,CD=AB=2,BC=AD=,
∵點E是CD的中點,
∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE,
∴∠AED=∠BEC,
在Rt△ADE中,AD=,DE=1,
∴tan∠AED==,
∴∠AED=60°,
∴∠BCE=∠AED=60°,
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴BE平分∠AEC;
(3)∵BP=2CP,BC==,
∴CP=,BP=,
在Rt△CEP中,tan∠CEP==,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP==,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,
∴△AEP≌△FBP,
∴△PFB能由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形,
變換的方法為:將△BPF繞點B順時針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.
【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),解直角三角形,圖形的變換等,熟練掌握和靈活應(yīng)用相關(guān)的性質(zhì)與定理、判斷出△AEP≌△△FBP是解本題的關(guān)鍵.
20、 (1)見解析;(2).
【解析】
分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結(jié)論可證;
(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設(shè)AE=x,BE=2x,由勾股定理求出AE、BE、AC的長. 作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.
詳解:(1)證明:連接BE.
∵AB是⊙O的直徑,
∴∠AEB=90°,
∴BE⊥AC,
而點E為AC的中點,
∴BE垂直平分AC,
∴BA=BC;
(2)解:∵AF為切線,
∴AF⊥AB,
∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,
∴∠FAC=∠ABE,
∴tan∠ABE=∠FAC=,
在Rt△ABE中,tan∠ABE==,
設(shè)AE=x,則BE=2x,
∴AB=x,即x=5,解得x=,
∴AC=2AE=2,BE=2
作CH⊥AF于H,如圖,
∵∠HAC=∠ABE,
∴Rt△ACH∽Rt△BAC,
∴==,即==,
∴HC=2,AH=4,
∵HC∥AB,
∴=,即=,解得FH=
在Rt△FHC中,F(xiàn)C==.

點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質(zhì),切線的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),平行線分線段成比例定理,銳角三角函數(shù)等知識點及見比設(shè)參的數(shù)學(xué)思想,得到BE垂直平分AC是解(1)的關(guān)鍵,得到Rt△ACH∽Rt△BAC是解(2)的關(guān)鍵.
21、(1)證明見解析;(1)①16;②14;
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根據(jù)全等三角形的性質(zhì)得到∠A=∠D,根據(jù)平行線的性質(zhì)得到∠A+∠D=180°,由矩形的判定定理即可得到結(jié)論;
(1)①根據(jù)相似三角形的性質(zhì)得到,求得△GBC的面積為18,于是得到四邊形BCFE的面積為16;
②根據(jù)四邊形BCFE的面積為16,列方程得到BC?AB=14,即可得到結(jié)論.
【詳解】
(1)證明:∵GB=GC,
∴∠GBC=∠GCB,
在平行四邊形ABCD中,
∵AD∥BC,AB=DC,AB∥CD,
∴GB-GE=GC-GF,
∴BE=CF,
在△ABE與△DCF中,

∴△ABE≌△DCF,
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=∠D=90°,
∴四邊形ABCD是矩形;
(1)①∵EF∥BC,
∴△GFE∽△GBC,
∵EF=AD,
∴EF=BC,
∴,
∵△GEF的面積為1,
∴△GBC的面積為18,
∴四邊形BCFE的面積為16,;
②∵四邊形BCFE的面積為16,
∴(EF+BC)?AB=×BC?AB=16,
∴BC?AB=14,
∴四邊形ABCD的面積為14,
故答案為:14.
【點睛】
本題考查了相似三角形的判定和性質(zhì),矩形的判定和性質(zhì),圖形面積的計算,全等三角形的判定和性質(zhì),證得△GFE∽△GBC是解題的關(guān)鍵.
22、(1)24.2米(2) 超速,理由見解析
【解析】
(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長,從而求得AB的長.
(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.
【詳解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.
∵43.56千米/小時大于40千米/小時,
∴此校車在AB路段超速.
23、(1)證明詳見解析;(2)S=(m+1)2+(m>);(2)2或1.
【解析】
試題分析:(1)利用兩點間的距離公式計算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;
(2)過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后證明△AOB∽△ACD,利用相似的性質(zhì)得,而S△AOB=,于是可得S=(m+1)2+(m>);
(2)作BH⊥y軸于H,如圖,分類討論:當(dāng)AB∥CD時,則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數(shù)得到tan∠AOB=2,tan∠ACB=,所以=2;當(dāng)AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據(jù)三角函數(shù)定義得到tan∠4=,tan∠ACB=,則=,然后分別解關(guān)于m的方程即可得到m的值.
試題解析:(1)證明:∵A(0,5),B(2,1),
∴AB==5,
∴AB=OA,
∵AB⊥BC,
∴∠ABC=90°,
在Rt△ABC和Rt△AOD中,
,
∴Rt△ABC≌Rt△AOD;
(2)解:過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,
∴∠2=∠2,
∴Rt△ABF∽Rt△BCE,
∴,即,
∴BC=(m+1),
在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,
∵△ABC≌△AOD,
∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,
∴∠4=∠5,
而AO=AB,AD=AC,
∴△AOB∽△ACD,
∴=,
而S△AOB=×5×2=,
∴S=(m+1)2+(m>);
(2)作BH⊥y軸于H,如圖,
當(dāng)AB∥CD時,則∠ACD=∠CAB,
而△AOB∽△ACD,
∴∠ACD=∠AOB,
∴∠CAB=∠AOB,
而tan∠AOB==2,tan∠ACB===,
∴=2,解得m=1;
當(dāng)AD∥BC,則∠5=∠ACB,
而△AOB∽△ACD,
∴∠4=∠5,
∴∠ACB=∠4,
而tan∠4=,tan∠ACB=,
∴=,
解得m=2.
綜上所述,m的值為2或1.

考點:相似形綜合題.
24、證明見解析
【解析】
試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;
(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得 ,
由(1)可得 ,從而得 ,問題得證.
試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
∵E是AC的中點,
∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
又∵∠BFD=∠DFC,
∴△BFD∽△DFC,
∴BF:DF=DF:FC,
∴DF2=BF·CF;
(2)∵AE·AC=ED·DF,
∴ ,
又∵∠A=∠A,
∴△AEG∽△ADC,
∴∠AEG=∠ADC=90°,
∴EG∥BC,
∴ ,
由(1)知△DFD∽△DFC,
∴ ,
∴ ,
∴EG·CF=ED·DF.

相關(guān)試卷

黃埔區(qū)廣附市級名校2023屆中考數(shù)學(xué)全真模擬試卷含解析:

這是一份黃埔區(qū)廣附市級名校2023屆中考數(shù)學(xué)全真模擬試卷含解析,共21頁。

廣東省黃埔區(qū)廣附市級名校2022年中考數(shù)學(xué)全真模擬試題含解析:

這是一份廣東省黃埔區(qū)廣附市級名校2022年中考數(shù)學(xué)全真模擬試題含解析,共18頁。試卷主要包含了計算的結(jié)果為,下列說法中,正確的是等內(nèi)容,歡迎下載使用。

2022年山東濱州陽信縣市級名校中考數(shù)學(xué)全真模擬試題含解析:

這是一份2022年山東濱州陽信縣市級名校中考數(shù)學(xué)全真模擬試題含解析,共20頁。試卷主要包含了考生必須保證答題卡的整潔,下列運算正確的是,下列各數(shù)等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

2022屆重慶市綦江區(qū)市級名校中考數(shù)學(xué)模試卷含解析

2022屆重慶市綦江區(qū)市級名校中考數(shù)學(xué)模試卷含解析

2022屆山東省寧陽縣市級名校中考數(shù)學(xué)全真模擬試題含解析

2022屆山東省寧陽縣市級名校中考數(shù)學(xué)全真模擬試題含解析

2022屆哈爾濱道外區(qū)市級名校中考數(shù)學(xué)全真模擬試題含解析

2022屆哈爾濱道外區(qū)市級名校中考數(shù)學(xué)全真模擬試題含解析

2022年遼寧省東港地區(qū)市級名校中考數(shù)學(xué)全真模擬試題含解析

2022年遼寧省東港地區(qū)市級名校中考數(shù)學(xué)全真模擬試題含解析

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部