
?2021-2022中考數(shù)學(xué)模擬試卷
注意事項:
1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。
2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。
3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。
4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。
一、選擇題(共10小題,每小題3分,共30分)
1.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為( )
A. B. C. D.1
2.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( ?。?br />
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
3.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
4.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對稱,那么下列說法正確的是( ?。?br />
A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′
C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′
5.某班7名女生的體重(單位:kg)分別是35、37、38、40、42、42、74,這組數(shù)據(jù)的眾數(shù)是( )
A.74 B.44 C.42 D.40
6.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( ?。?br />
A.36 B.12 C.6 D.3
7.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是( ?。?br />
A.12 B.14 C.16 D.18
8.在△ABC中,∠C=90°,,那么∠B的度數(shù)為( )
A.60° B.45° C.30° D.30°或60°
9.如圖所示的幾何體的主視圖正確的是( )
A. B. C. D.
10.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32° B.64° C.77° D.87°
二、填空題(本大題共6個小題,每小題3分,共18分)
11.若關(guān)于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.
12.如果小球在如圖所示的地面上自由滾動,并隨機停留在某塊方磚上,每塊方磚大小、質(zhì)地完全一致,那么它最終停留在黑色區(qū)域的概率是__________.
13.閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:∠ACB是△ABC的一個內(nèi)角.
求作:∠APB=∠ACB.
小明的做法如下:
如圖
①作線段AB的垂直平分線m;
②作線段BC的垂直平分線n,與直線m交于點O;
③以點O為圓心,OA為半徑作△ABC的外接圓;
④在弧ACB上取一點P,連結(jié)AP,BP.
所以∠APB=∠ACB.
老師說:“小明的作法正確.”
請回答:
(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;
(2)∠APB=∠ACB的依據(jù)是_____.
14.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.
15.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發(fā),沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內(nèi)滑動,設(shè)運動時間為秒,當(dāng)?shù)竭_原點時停止運動
連接,線段的長隨的變化而變化,當(dāng)最大時,______.當(dāng)?shù)倪吪c坐標軸平行時,______.
16.如圖,點 A 是反比例函數(shù) y=﹣(x<0)圖象上的點,分別過點 A 向橫軸、縱軸作垂線段,與坐標軸恰好圍成一個正方形,再以正方形的一組對邊為直徑作兩個半圓,其余部分涂上陰影,則陰影部分的面積為______.
三、解答題(共8題,共72分)
17.(8分)如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1?k2=﹣1.
解決問題:
①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;
②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.
18.(8分)(定義)如圖1,A,B為直線l同側(cè)的兩點,過點A作直線1的對稱點A′,連接A′B交直線l于點P,連接AP,則稱點P為點A,B關(guān)于直線l的“等角點”.
(運用)如圖2,在平面直坐標系xOy中,已知A(2,),B(﹣2,﹣)兩點.
(1)C(4,),D(4,),E(4,)三點中,點 是點A,B關(guān)于直線x=4的等角點;
(2)若直線l垂直于x軸,點P(m,n)是點A,B關(guān)于直線l的等角點,其中m>2,∠APB=α,求證:tan=;
(3)若點P是點A,B關(guān)于直線y=ax+b(a≠0)的等角點,且點P位于直線AB的右下方,當(dāng)∠APB=60°時,求b的取值范圍(直接寫出結(jié)果).
19.(8分)正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.
(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是______;
(2)如圖2,當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當(dāng)點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.
20.(8分)先化簡,再求值:(1﹣)÷,其中x是不等式組的整數(shù)解
21.(8分)如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達B處,測得海島在南偏西37°的方向,求小島到海岸線的距離.(參考數(shù)據(jù):tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)
22.(10分)如圖,在△ABC中,AB=AC,D為BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,求證:DE=DF.
23.(12分)某班為了解學(xué)生一學(xué)期做義工的時間情況,對全班50名學(xué)生進行調(diào)查,按做義工的時間(單位:小時),將學(xué)生分成五類: 類( ),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.
根據(jù)以上信息,解答下列問題: 類學(xué)生有 人,補全條形統(tǒng)計圖;類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;從該班做義工時間在的學(xué)生中任選2人,求這2人做義工時間都在 中的概率.
24.已知關(guān)于x的方程.
(1)當(dāng)該方程的一個根為1時,求a的值及該方程的另一根;
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.
參考答案
一、選擇題(共10小題,每小題3分,共30分)
1、B
【解析】
分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.
詳解: 由于點P在運動中保持∠APD=90°, ∴點P的路徑是一段以AD為直徑的弧,
設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,
在Rt△QDC中,QC=, ∴CP=QC-QP=,故選B.
點睛:本題主要考查的是圓的相關(guān)知識和勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵是根據(jù)圓的知識得出點P的運動軌跡.
2、D
【解析】
首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉(zhuǎn)換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質(zhì)進行判斷.
【詳解】
解:
四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,
,,
四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);
過點分別作,邊上的高為,.則
(兩紙條相同,紙條寬度相同);
平行四邊形中,,即,
,即.故正確;
平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).
,(菱形的對角相等),故正確;
,(平行四邊形的對邊相等),故正確;
如果四邊形是矩形時,該等式成立.故不一定正確.
故選:.
【點睛】
本題考查了菱形的判定與性質(zhì).注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.
3、C
【解析】
由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.
【詳解】
∵∠A是公共角,
∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;
當(dāng)AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;
AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,
故選C.
4、B
【解析】
∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,
∴拋物線對稱軸為x=﹣1.
∴拋物線與y軸的交點為A(0,﹣3).
則與A點以對稱軸對稱的點是B(2,﹣3).
若將拋物線C平移到C′,并且C,C′關(guān)于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.
則B點平移后坐標應(yīng)為(4,﹣3),
因此將拋物線C向右平移4個單位.
故選B.
5、C
【解析】
試題分析:眾數(shù)是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),在這組數(shù)據(jù)中42出現(xiàn)次數(shù)最多,故選C.
考點:眾數(shù).
6、D
【解析】
設(shè)△OAC和△BAD的直角邊長分別為a、b,結(jié)合等腰直角三角形的性質(zhì)及圖象可得出點B的坐標,根據(jù)三角形的面積公式結(jié)合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結(jié)論.?
解:設(shè)△OAC和△BAD的直角邊長分別為a、b,?
則點B的坐標為(a+b,a﹣b).
∵點B在反比例函數(shù)的第一象限圖象上,?
∴(a+b)×(a﹣b)=a2﹣b2=1.?
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.?
故選D.
點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質(zhì)以及面積公式,解題的關(guān)鍵是找出a2﹣b2的值.解決該題型題目時,要設(shè)出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標是關(guān)鍵.
7、C
【解析】
延長線段BN交AC于E.
∵AN平分∠BAC,∴∠BAN=∠EAN.
在△ABN與△AEN中,
∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,
∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
又∵M是△ABC的邊BC的中點,∴CE=2MN=2×3=6,
∴AC=AE+CE=10+6=16.故選C.
8、C
【解析】
根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.
【詳解】
解:∵,
∴∠A=60°.
∵∠C=90°,
∴∠B=90°-60°=30°.
點睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質(zhì),熟記特殊角的三角函數(shù)值是解答本題的突破點.
9、D
【解析】
主視圖是從前向后看,即可得圖像.
【詳解】
主視圖是一個矩形和一個三角形構(gòu)成.故選D.
10、C
【解析】
試題分析:由旋轉(zhuǎn)的性質(zhì)可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.
考點:旋轉(zhuǎn)的性質(zhì).
二、填空題(本大題共6個小題,每小題3分,共18分)
11、30°
【解析】
試題解析:∵關(guān)于x的方程有兩個相等的實數(shù)根,
∴
解得:
∴銳角α的度數(shù)為30°;
故答案為30°.
12、.
【解析】
先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結(jié)論.
【詳解】
解:∵由圖可知,黑色方磚4塊,共有16塊方磚,
∴黑色方磚在整個區(qū)域中所占的比值
∴它停在黑色區(qū)域的概率是;
故答案為.
【點睛】
本題考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.
13、①線段垂直平分線上的點與這條線段兩個端點的距離相等;②等量代換 同弧所對的圓周角相等
【解析】
(1)根據(jù)線段的垂直平分線的性質(zhì)定理以及等量代換即可得出結(jié)論.
(2)根據(jù)同弧所對的圓周角相等即可得出結(jié)論.
【詳解】
(1)如圖2中,
∵MN垂直平分AB,EF垂直平分BC,
∴OA=OB,OB=OC(線段垂直平分線上的點與這條線段兩個端點的距離相等),
∴OA=OB=OC(等量代換)
故答案是:
(2)∵,
∴∠APB=∠ACB(同弧所對的圓周角相等).
故答案是:(1)線段垂直平分線上的點與這條線段兩個端點的距離相等和等量代換;(2)同弧所對的圓周角相等.
【點睛】
考查作圖-復(fù)雜作圖、線段的垂直平分線的性質(zhì)、三角形的外心等知識,解題的關(guān)鍵是熟練掌握三角形外心的性質(zhì).
14、1
【解析】
分析:根據(jù)題意得出點B的坐標,根據(jù)面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.
詳解:根據(jù)一次函數(shù)可得:點B的坐標為(1,0), ∵BD平分△ABC的面積,BC=3
∴點D的橫坐標1.5, ∴點D的坐標為, ∵DE:AB=1:1,
∴點A的坐標為(1,1), ∴k=1×1=1.
點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應(yīng)用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關(guān)鍵.
15、4
【解析】
(1)由等腰三角形的性質(zhì)可得AD=BD,從而可求出OD=4,然后根據(jù)當(dāng)O,D,C共線時,OC取最大值求解即可;
(2)根據(jù)等腰三角形的性質(zhì)求出CD,分AC∥y軸、BC∥x軸兩種情況,根據(jù)相似三角形的判定定理和性質(zhì)定理列式計算即可.
【詳解】
(1),
,
當(dāng)O,D,C共線時,OC取最大值,此時OD⊥AB.
∵,
∴△AOB為等腰直角三角形,
∴ ;
(2)∵BC=AC,CD為AB邊的高,
∴∠ADC=90°,BD=DA=AB=4,
∴CD==3,
當(dāng)AC∥y軸時,∠ABO=∠CAB,
∴Rt△ABO∽Rt△CAD,
∴,即,
解得,t=,
當(dāng)BC∥x軸時,∠BAO=∠CBD,
∴Rt△ABO∽Rt△BCD,
∴,即,
解得,t= ,
則當(dāng)t=或時,△ABC的邊與坐標軸平行.
故答案為t=或.
【點睛】
本題考查的是直角三角形的性質(zhì),等腰三角形的性質(zhì),相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理、靈活運用分情況討論思想是解題的關(guān)鍵.
16、4﹣π
【解析】
由題意可以假設(shè)A(-m,m),則-m2=-4,求出點A坐標即可解決問題.
【詳解】
由題意可以假設(shè)A(-m,m),
則-m2=-4,
∴m=≠±2,
∴m=2,
∴S陰=S正方形-S圓=4-π,
故答案為4-π.
【點睛】
本題考查反比例函數(shù)圖象上的點的特征、正方形的性質(zhì)、圓的面積公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題
三、解答題(共8題,共72分)
17、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(6,﹣14)(4,﹣5);(3).
【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)垂線間的關(guān)系,可得PA,PB的解析式,根據(jù)解方程組,可得P點坐標;
(3)根據(jù)垂直于x的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得MQ,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得面積的最大值,根據(jù)三角形的底一定時面積與高成正比,可得三角形高的最大值
【詳解】
解:(1)將A,B點坐標代入,得
,
解得,
拋物線的解析式為y=;
(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得
2m=﹣1,
即m=﹣;
故答案為﹣;
②AB的解析式為
當(dāng)PA⊥AB時,PA的解析式為y=﹣2x﹣2,
聯(lián)立PA與拋物線,得,
解得(舍),,
即P(6,﹣14);
當(dāng)PB⊥AB時,PB的解析式為y=﹣2x+3,
聯(lián)立PB與拋物線,得,
解得(舍),
即P(4,﹣5),
綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(6,﹣14)(4,﹣5);
(3)如圖:
,
∵M(t,﹣t2+t+1),Q(t, t+),
∴MQ=﹣t2+
S△MAB=MQ|xB﹣xA|
=(﹣t2+)×2
=﹣t2+,
當(dāng)t=0時,S取最大值,即M(0,1).
由勾股定理,得
AB==,
設(shè)M到AB的距離為h,由三角形的面積,得
h==.
點M到直線AB的距離的最大值是.
【點睛】
本題考查了二次函數(shù)綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關(guān)鍵
18、(1)C(2)(3)b<﹣且b≠﹣2或b>
【解析】
(1)先求出B關(guān)于直線x=4的對稱點B′的坐標,根據(jù)A、B′的坐標可得直線AB′的解析式,把x=4代入求出P點的縱坐標即可得答案;(2)如圖:過點A作直線l的對稱點A′,連A′B′,交直線l于點P,作BH⊥l于點H,根據(jù)對稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據(jù)相似三角形對應(yīng)邊成比例可得m=
根據(jù)外角性質(zhì)可知∠A=∠A′=,在Rt△AGP中,根據(jù)正切定義即可得結(jié)論;(3)當(dāng)點P位于直線AB的右下方,∠APB=60°時,點P在以AB為弦,所對圓周為60°,且圓心在AB下方,若直線y=ax+b(a≠0)與圓相交,設(shè)圓與直線y=ax+b(a≠0)的另一個交點為Q
根據(jù)對稱性質(zhì)可證明△ABQ是等邊三角形,即點Q為定點,若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過定點Q,連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據(jù)相似三角形對應(yīng)邊成比例可得ON、NQ的長,即可得Q點坐標,根據(jù)A、B、Q的坐標可求出直線AQ、BQ的解析式,根據(jù)P與A、B重合時b的值求出b的取值范圍即可.
【詳解】
(1)點B關(guān)于直線x=4的對稱點為B′(10,﹣),
∴直線AB′解析式為:y=﹣,
當(dāng)x=4時,y=,
故答案為:C
(2)如圖,過點A作直線l的對稱點A′,連A′B′,交直線l于點P
作BH⊥l于點H
∵點A和A′關(guān)于直線l對稱
∴∠APG=∠A′PG
∵∠BPH=∠A′PG
∴∠APG=∠BPH
∵∠AGP=∠BHP=90°
∴△AGP∽△BHP
∴,即,
∴mn=2,即m=,
∵∠APB=α,AP=AP′,
∴∠A=∠A′=,
在Rt△AGP中,tan
(3)如圖,當(dāng)點P位于直線AB的右下方,∠APB=60°時,
點P在以AB為弦,所對圓周為60°,且圓心在AB下方
若直線y=ax+b(a≠0)與圓相交,設(shè)圓與直線y=ax+b(a≠0)的另一個交點為Q
由對稱性可知:∠APQ=∠A′PQ,
又∠APB=60°
∴∠APQ=∠A′PQ=60°
∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
∴∠BAQ=60°=∠AQB=∠ABQ
∴△ABQ是等邊三角形
∵線段AB為定線段
∴點Q為定點
若直線y=ax+b(a≠0)與圓相切,易得P、Q重合
∴直線y=ax+b(a≠0)過定點Q
連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N
∵A(2,),B(﹣2,﹣)
∴OA=OB=
∵△ABQ是等邊三角形
∴∠AOQ=∠BOQ=90°,OQ=,
∴∠AOM+∠NOD=90°
又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
∵∠AMO=∠ONQ=90°
∴△AMO∽△ONQ
∴,
∴,
∴ON=2,NQ=3,∴Q點坐標為(3,﹣2)
設(shè)直線BQ解析式為y=kx+b
將B、Q坐標代入得
,
解得
,
∴直線BQ的解析式為:y=﹣,
設(shè)直線AQ的解析式為:y=mx+n,
將A、Q兩點代入,
解得 ,
∴直線AQ的解析式為:y=﹣3,
若點P與B點重合,則直線PQ與直線BQ重合,此時,b=﹣,
若點P與點A重合,則直線PQ與直線AQ重合,此時,b=,
又∵y=ax+b(a≠0),且點P位于AB右下方,
∴b<﹣ 且b≠﹣2或b>.
【點睛】
本題考查對稱性質(zhì)、相似三角形的判定與性質(zhì)、根據(jù)待定系數(shù)法求一次函數(shù)解析式及銳角三角函數(shù)正切的定義,熟練掌握相關(guān)知識是解題關(guān)鍵.
19、(1)CH=AB.;(2)成立,證明見解析;(3)
【解析】
(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.
(2)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.
(3)首先根據(jù)三角形三邊的關(guān)系,可得CK<AC+AK,據(jù)此判斷出當(dāng)C、A、K三點共線時,CK的長最大;然后根據(jù)全等三角形判定的方法,判斷出△DFK≌△DEH,即可判斷出DK=DH,再根據(jù)全等三角形判定的方法,判斷出△DAK≌△DCH,即可判斷出AK=CH=AB;最后根據(jù)CK=AC+AK=AC+AB,求出線段CK長的最大值是多少即可.
【詳解】
解:(1)如圖1,連接BE,
,
在正方形ABCD中,
AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
∵點E是DC的中點,DE=EC,
∴點F是AD的中點,
∴AF=FD,
∴EC=AF,
在△ABF和△CBE中,
∴△ABF≌△CBE,
∴∠1=∠2,
∵EH⊥BF,∠BCE=90°,
∴C、H兩點都在以BE為直徑的圓上,
∴∠3=∠2,
∴∠1=∠3,
∵∠3+∠4=90°,∠1+∠HBC=90°,
∴∠4=∠HBC,
∴CH=BC,
又∵AB=BC,
∴CH=AB.
(2)當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論CH=AB仍然成立.
如圖2,連接BE,
,
在正方形ABCD中,
AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
∵AD=CD,DE=DF,
∴AF=CE,
在△ABF和△CBE中,
∴△ABF≌△CBE,
∴∠1=∠2,
∵EH⊥BF,∠BCE=90°,
∴C、H兩點都在以BE為直徑的圓上,
∴∠3=∠2,
∴∠1=∠3,
∵∠3+∠4=90°,∠1+∠HBC=90°,
∴∠4=∠HBC,
∴CH=BC,
又∵AB=BC,
∴CH=AB.
(3)如圖3,
,
∵CK≤AC+AK,
∴當(dāng)C、A、K三點共線時,CK的長最大,
∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,
∴∠KDF=∠HDE,
∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,
∴∠DFK=∠DEH,
在△DFK和△DEH中,
∴△DFK≌△DEH,
∴DK=DH,
在△DAK和△DCH中,
∴△DAK≌△DCH,
∴AK=CH
又∵CH=AB,
∴AK=CH=AB,
∵AB=3,
∴AK=3,AC=3,
∴CK=AC+AK=AC+AB=,
即線段CK長的最大值是.
考點:四邊形綜合題.
20、x=3時,原式=
【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,再利用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)將除法運算化為乘法運算,約分得到最簡結(jié)果,求出不等式組的解集,找出解集中的整數(shù)計算得出到x的值,代入計算即可求出值.
【詳解】
解:原式=÷
=×
=,
解不等式組得,2<x<,
∵x取整數(shù),
∴x=3,
當(dāng)x=3時,原式=.
【點睛】
本題主要考查分式額化簡求值及一元一次不等式組的整數(shù)解.
21、10
【解析】
試題分析:如圖:過點C作CD⊥AB于點D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同樣在Rt△BCD中,可得BD= 0.755CD,再根據(jù)AB=BD-CD=780,代入進行求解即可得.
試題解析:如圖:過點C作CD⊥AB于點D,
由已知可得:∠ACD=32°,∠BCD =37°,
在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,
在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,
∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,
答:小島到海岸線的距離是10米.
【點睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)造直角三角形、根據(jù)圖形靈活選用三角函數(shù)進行求解是關(guān)鍵.
22、答案見解析
【解析】
由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中點,可知BD=CD,利用AAS可證△BFD≌△CED,從而有DE=DF.
23、(1)5;(2)36%;(3).
【解析】
試題分析:(1)根據(jù):數(shù)據(jù)總數(shù)-已知的小組頻數(shù)=所求的小組頻數(shù),進行求解,然后根據(jù)所求數(shù)據(jù)補全條形圖即可;
(2)根據(jù):小組頻數(shù)= ,進行求解即可;
(3)利用列舉法求概率即可.
試題解析:
(1)E類:50-2-3-22-18=5(人),故答案為:5;
補圖如下:
(2)D類:1850×100%=36%,故答案為:36%;
(3)設(shè)這5人為
有以下10種情況:
其中,兩人都在 的概率是: .
24、(1),;(2)證明見解析.
【解析】
試題分析:(1)根據(jù)一元二次方程根與系數(shù)的關(guān)系列方程組求解即可.
(2)要證方程都有兩個不相等的實數(shù)根,只要證明根的判別式大于0即可.
試題解析:(1)設(shè)方程的另一根為x1,
∵該方程的一個根為1,∴.解得.
∴a的值為,該方程的另一根為.
(2)∵,
∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.
考點:1.一元二次方程根與系數(shù)的關(guān)系;2. 一元二次方程根根的判別式;3.配方法的應(yīng)用.
這是一份浙江省寧波市北侖區(qū)重點達標名校2021-2022學(xué)年中考數(shù)學(xué)考前最后一卷含解析,共19頁。試卷主要包含了若a與5互為倒數(shù),則a=等內(nèi)容,歡迎下載使用。
這是一份2022年浙江省寧波市北侖區(qū)重點達標名校中考數(shù)學(xué)適應(yīng)性模擬試題含解析,共22頁。試卷主要包含了考生必須保證答題卡的整潔,下列運算正確的是等內(nèi)容,歡迎下載使用。
這是一份2022年安徽省合肥市廬陽區(qū)重點達標名校中考數(shù)學(xué)最后沖刺模擬試卷含解析,共23頁。試卷主要包含了考生必須保證答題卡的整潔,下列計算正確的是,我們知道,下列事件中為必然事件的是,已知,下列說法中,不正確的是等內(nèi)容,歡迎下載使用。
注冊成功