



2022年福建省漳州市詔安第三實驗中學中考數(shù)學模擬試卷(二)(word版含答案)
展開
這是一份2022年福建省漳州市詔安第三實驗中學中考數(shù)學模擬試卷(二)(word版含答案),共21頁。試卷主要包含了5D,70米,方差分別為S甲2=0,【答案】B,【答案】C,【答案】D等內容,歡迎下載使用。
2022年福建省漳州市詔安第三實驗中學中考數(shù)學模擬試卷(二) 一.選擇題(本題共10小題,共40分)計算的結果是A. B. C. D. 中國疫苗撐起全球抗疫“生命線”中國外交部數(shù)據(jù)顯示,截止年月底,我國已無償向個國家和個國際組織提供疫苗援助預計年中國新冠疫苗產(chǎn)能有望達到億劑,約占全球產(chǎn)能的一半,必將為全球抗疫作出重大貢獻數(shù)據(jù)“億”用科學記數(shù)法表示為A. B. C. D. 在下面的四個幾何體中,它們各自的左視圖與主視圖不相同的是A. B. C. D. 下列計算錯誤的是A. B.
C. D. 方程的根是A. B.
C. , D. ,下列各點中,在反比例函數(shù)圖象上的是A. B. C. D. 如圖,正方形的邊長為,則圖中陰影部分的面積為A.
B.
C.
D. 不能確定如圖,把一個長方形紙片沿折疊后,點、分別落在、的位置,若,則等于A.
B.
C.
D. 如圖是根據(jù)某班名同學一周的體育鍛煉情況繪制的條形統(tǒng)計圖,則這個班名同學一周參加體育鍛煉時間的眾數(shù)與中位數(shù)分別為
A. , B. , C. , D. ,如圖,在平面直角坐標系中,點在第一象限,與軸交于、兩點,與軸相切于點,則點的坐標是
B.
C.
D. 二.填空題(本題共6小題,共24分)甲、乙兩支足球隊,每支球隊隊員身高數(shù)據(jù)的平均數(shù)都是米,方差分別為,,其身高較整齊的是______球隊.如果,那么的補角等于______.一個矩形的面積為,寬為,則矩形的長為______.若,則 ______ .在半徑為的圓中,的圓心角所對的弧長是______ .一個叫巴爾末的中學教師成功地從光譜數(shù)據(jù),,,,中得到巴爾末公式,從而打開了光譜奧秘的大門,請你按照這種規(guī)律,寫出第個數(shù)據(jù)是______.三.計算題(本題共2小題,共18分) 計算:.
解不等式組:.
四.解答題(本題共7小題,共68分)如圖,點,在上,且,.
求證:∽.
若,則:______.
又到了一年中的夏令營活動,某班學生在活動期間到詔安梅嶺去參觀“懸鐘塔”下面是兩位同學的一段對話:
甲:我站在此處看塔頂仰角為,
乙:我站在此處看塔頂仰角為.
甲:我們的身高都是,
乙:我們相距.
請你根據(jù)兩位同學的對話,計算該塔的高度精確到,,
如圖:在平面直角坐標系中,,,.
______.
在圖中作出關于軸的對稱圖形其中點、、的對稱點分別為點、、
寫出點、、的坐標.______,______,______.
為了預防流感,某學校在休息天用藥熏消毒法對教室進行消毒.已知藥物釋放過程中,室內每立方米空氣中的含藥量毫克與時間小時成正比;藥物釋放完畢后,與的函數(shù)關系式為為常數(shù),如圖所示.據(jù)圖中提供的信息,解答下列問題:
寫出從藥物釋放開始,與之間的兩個函數(shù)關系式及相應的自變量的取值范圍;
據(jù)測定,當空氣中每立方米的含藥量降低到毫克以下時,學生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學生才能進入教室?
甲布袋中有三個紅球,分別標有數(shù)字,,;乙布袋中有三個白球,分別標有數(shù)字,,這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機摸出一個紅球,小剛從乙袋中隨機摸出一個白球.
用畫樹狀圖樹形圖或列表的方法,求摸出的兩個球上的數(shù)字之和為的概率;
小亮和小剛做游戲,規(guī)則是:若摸出的兩個球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認為這個游戲公平嗎?為什么?
如圖,在正方形中,是上一點,是延長線上一點,且.
求證:;
在圖中,若在上,且,則成立嗎?為什么?
運用解答中所積累的經(jīng)驗和知識,完成下題:
如圖,在直角梯形中,,,,是上一點,且,,求的長.
如圖,拋物線與軸交于,兩點,與軸交于點,且.
求拋物線的解析式及頂點的坐標;
判斷的形狀,證明你的結論;
點是軸上的一個動點,當的值最小時,求的值.
答案和解析 1.【答案】
【解析】解:,
.
故選:.
先根據(jù)算術平方根的意義求出的值,再根據(jù)實數(shù)的運算法則計算即可.
此題主要考查了實數(shù)的簡單計算,首先理解表示的算術平方根,才能再進行正確計算.
2.【答案】
【解析】解:將億用科學記數(shù)法表示為.
故選:.
科學記數(shù)法的表示形式為的形式,其中,為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值時,是正數(shù);當原數(shù)的絕對值時,是負數(shù).
此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為的形式,其中,為整數(shù),表示時關鍵要正確確定的值以及的值.
3.【答案】
【解析】解:、左視圖與主視圖都是正方形,
B、左視圖與主視圖不相同,
C、左視圖與主視圖都是矩形,
D、左視圖與主視圖都是等腰三角形.
故選B.
分別分析四個選項的左視圖和主視圖,從而得出結論.
本題考查簡單幾何體的三視圖,屬于基礎題.
4.【答案】
【解析】解:、,正確;
B、,正確;
C、,正確;
D、應為,故本選項錯誤.
故選D.
分別根據(jù)二次根式的化簡、合并同類項、冪的乘方的性質進行計算.
本題綜合考查了整式運算的多個考點,包括合并同類項、二次根式的化簡、冪的乘方,需熟練掌握且區(qū)分清楚,才不容易出錯.
合并同類項的法則,只把系數(shù)相加減,字母與字母的次數(shù)不變,不是同類項的一定不能合并.
5.【答案】
【解析】【分析】
本題可根據(jù)“兩式相乘值為,這兩式中至少有一式值為”來解題.
本題考查了一元二次方程的解法,解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點靈活選用合適的方法.
【解答】
解:,
或,
解得,.
故選:. 6.【答案】
【解析】解:、,故不在函數(shù)圖象上;
B、,故不在函數(shù)圖象上;
C、,故不在函數(shù)圖象上;
D、,故在函數(shù)圖象上.
故選D.
根據(jù)得,所以只要點的橫坐標與縱坐標的積等于,就在函數(shù)圖象上.
本題主要考查反比例函數(shù)圖象上點的坐標特征.所有在反比例函數(shù)上的點的橫縱坐標的積應等于比例系數(shù).
7.【答案】
【解析】【分析】
本題考查了正方形以及軸對稱的性質.注意利用軸對稱的性質,將陰影面積轉化為求一個大三角形的面積是解題的關鍵.
根據(jù)正方形的定義和軸對稱的性質可得陰影部分的面積等于正方形的面積的一半,然后列式進行計算即可得解.
【解答】
解:根據(jù)圖形和軸對稱的性質可得陰影部分的面積等于正方形的面積的一半,
所以.
故選B. 8.【答案】
【解析】【分析】
本題考查了:、折疊的性質;、矩形的性質,平行線的性質,平角的概念求解.
首先根據(jù),求出的度數(shù),然后根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知,最后求得的大?。?/span>
【解答】
解:,
,
由折疊的性質知,,
.
故等于.
故選:. 9.【答案】
【解析】【分析】
本題屬于基礎題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).
解讀統(tǒng)計圖,獲取信息,根據(jù)定義求解.
【解答】
解:數(shù)據(jù)出現(xiàn)了次,最多是,為眾數(shù);
在第位、位的均是,所以為中位數(shù).
故選:. 10.【答案】
【解析】【分析】
本題需綜合利用垂徑定理、勾股定理來解決問題.
因為點在第一象限,與軸交于、兩點,與軸相切于點,所以,,,連接,則,過點作于,則是矩形,由垂徑定理可知,所以,再連接,則,利用勾股定理可求出,從而就求出了的坐標.
【解答】
解:連接,,,再過點作于,則是矩形,
點在第一象限,與軸交于、兩點,與軸相切于點,
,,,
與軸相切于點,
,
由垂徑定理可知:,
,
,
利用勾股定理知,
.
故選A. 11.【答案】甲
【解析】解:,
甲隊整齊.
故填甲.
根據(jù)方差的意義判斷.方差反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.
本題考查方差的意義.它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.
12.【答案】
【解析】解:的補角.
故答案為:.
根據(jù)互為補角的兩個角的和等于列式計算即可得解.
本題考查了補角,是基礎題,熟記補角的概念是解題的關鍵.
13.【答案】
【解析】解:根據(jù)題意得:.
故答案為:.
根據(jù)矩形的面積公式長寬計算即可.
本題考查了整式的除法,用到的知識點有矩形的面積公式,即矩形的面積公式長寬.
14.【答案】
【解析】解:,,
,,
,,
則.
故答案為:.
根據(jù)非負數(shù)的性質得到方程,,由此即可求出、的值,然后代入所求代數(shù)式中解答即可.
此題主要考查了非負數(shù)的性質,兩個非負數(shù)相加,結果為零,則這兩個數(shù)都為零.
15.【答案】
【解析】解:弧長是:.
故答案是:.
利用弧長公式,即可直接求解.
本題考查了弧長公式,正確記憶公式是關鍵.
16.【答案】
【解析】解:,,,,,
第個光譜數(shù)據(jù)可表示為,
第個數(shù)據(jù)是,
故答案為:.
由題意得第個光譜數(shù)據(jù)可表示為,可求得此題結果.
此題考查了數(shù)字規(guī)律問題的解決能力,關鍵是能通過觀察、猜想、驗證歸納出此題規(guī)律.
17.【答案】解:原式
.
【解析】先根據(jù)負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)值、絕對值及開方運算法則計算,再合并即可.
此題考查的是實數(shù)的運算,掌握負整數(shù)指數(shù)冪的運算法則、特殊角的三角函數(shù)值是解決此題的關鍵.
18.【答案】解:由題意知:分
分
原不等式的解集為分
【解析】先求出各不等式的解集,再求其公共解集即可.
解不等式組應遵循的原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.
19.【答案】:
【解析】證明:
,
,
,
在和中,,,
∽.
,
,
∽,
.
利用平行關系,找出對應角度相等,即可證明相似;
根據(jù)相似三角形的性質相似三角形的面積之比等于相似比的平方建立等量關系就可以求出結論.
本題考查了相似三角形的判定及相似三角形的面積之間的關系,解題關鍵是找出相似比.
20.【答案】解:由題意得:,,,;
在中,,
,
,
;
在中,,,
,即;
;
.
答:此塔的高度約為.
【解析】根據(jù)三角形外角和定理,可求得,等角對等邊,得出,在中,根據(jù)角的正弦值可求出,再加上同學自身的身高即可解答.
此題考查了解直角三角形的應用仰角與俯角,要求學生借助仰角關系構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.
21.【答案】;
關于軸的對稱圖形如圖所示;
【解析】解:;
見答案;
.
故答案為:; .
利用等于底邊乘以點到的距離列式計算即可得解;
根據(jù)網(wǎng)格結構找出點、、關于軸的對稱點、、的位置,然后順次連接即可;
根據(jù)平面直角坐標系寫出各點的坐標即可.
本題考查了利用軸對稱變換作圖,熟練掌握網(wǎng)格結構準確找出對應點的位置是解題的關鍵.
22.【答案】解:將點代入中,
解得,有,
將代入,得
,
所以所求反比例函數(shù)關系式為,
再將代入,得,
所以所求正比例函數(shù)關系式為
解不等式,
解得,
所以至少需要經(jīng)過小時后,學生才能進入教室.
【解析】首先根據(jù)題意,已知藥物釋放過程中,室內每立方米空氣中的含藥量毫克與時間小時成正比;藥物釋放完畢后,與的函數(shù)關系式為為常數(shù),將數(shù)據(jù)代入用待定系數(shù)法可得反比例函數(shù)的關系式;
根據(jù)中的關系式列不等式,進一步求解可得答案.
現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用待定系數(shù)法求出它們的關系式.
23.【答案】解:
解法一:樹狀圖
兩個球上的數(shù)字之和為.
解法二:列表 兩個球上的數(shù)字之和為.
不公平.
小亮勝,小剛勝.
小亮勝小剛勝.
這個游戲不公平.
【解析】游戲是否公平,關鍵要看游戲雙方獲勝的機會是否相等,即判斷雙方取勝的概率是否相等,或轉化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等.
本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.
24.【答案】證明:在正方形中,
,,,
≌.
.
解:成立.
≌,
.
.
即.
又,
.
,,,
≌.
.
.
解:過作,交延長線于,
在直角梯形中,
,,
又,,
四邊形為正方形.
.
已知,根據(jù)可知,,
設,則,
,.
在中
,即
解得:.
.
【解析】利用已知條件,可證出≌,即.
借助的全等得出,從而得出,根據(jù)全等三角形的判定可得≌,從而可以得出結論.
過作,交延長線于,先證四邊形是正方形有一組鄰邊相等的矩形是正方形.
再設,利用、的結論,在中利用勾股定理可求出.
本題是一道幾何綜合題,內容涉及三角形的全等、圖形的旋轉以及勾股定理的應用,重點考查學生的數(shù)學學習能力,是一道好題.本題的設計由淺入深,循序漸進,考慮到學生的個體差異.
25.【答案】解:點在拋物線上,
,解得
拋物線的解析式為.
,
頂點的坐標為
當時,,.
當時,,,,
,,.
,,,
是直角三角形.
作出點關于軸的對稱點,則,,
連接交軸于點,根據(jù)軸對稱性及兩點之間線段最短可知,的值最小.
解法一:設拋物線的對稱軸交軸于點.
軸,,
∽.
,
.
解法二:設直線的解析式為,
則,
解得:.
.
當時,,.
.
【解析】把點的坐標代入拋物線解析式,求的值,即可得出拋物線的解析式,根據(jù)頂點坐標公式,即可求出頂點坐標;
根據(jù)直角三角形的性質,推出,,即,即可確定是直角三角形;
作出點關于軸的對稱點,則,連接交軸于點,根據(jù)軸對稱性及兩點之間線段最短可知,的值最?。?/span>
解法一:設拋物線的對稱軸交軸于點∽,然后根據(jù)三角形相似的有關性質定理,求的值;
解法二:待定系數(shù)法求出直線的解析式,令進而可解.
本題著重考查了待定系數(shù)法求二次函數(shù)解析式、勾股定理的逆定理、軸對稱性質以及相似三角形的性質,關鍵在于求出函數(shù)表達式,作出輔助線,找對相似三角形.
相關試卷
這是一份福建省詔安縣懷恩中學2022年中考數(shù)學模擬精編試卷含解析,共23頁。試卷主要包含了五個新籃球的質量,下列各式中,正確的是等內容,歡迎下載使用。
這是一份2022屆福建省漳州市詔安縣重點達標名校中考數(shù)學最后沖刺濃縮精華卷含解析,共20頁。試卷主要包含了考生必須保證答題卡的整潔,下列計算中,錯誤的是等內容,歡迎下載使用。
這是一份2022屆福建省漳州市詔安縣中考五模數(shù)學試題含解析,共23頁。試卷主要包含了下列運算正確的是等內容,歡迎下載使用。

相關試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內免費重復下載